--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9295 - name: F1 type: f1 value: 0.9294149161247448 --- # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2037 - Accuracy: 0.9295 - F1: 0.9294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 63 | 0.9206 | 0.7015 | 0.6313 | | No log | 2.0 | 126 | 0.4065 | 0.8855 | 0.8799 | | 0.978 | 3.0 | 189 | 0.2554 | 0.9205 | 0.9202 | | 0.978 | 4.0 | 252 | 0.2115 | 0.9285 | 0.9286 | | 0.268 | 5.0 | 315 | 0.2037 | 0.9295 | 0.9294 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1 - Datasets 2.14.6 - Tokenizers 0.14.1