{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b87c26ede10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b87c26edea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b87c26edf30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b87c26edfc0>", "_build": "<function ActorCriticPolicy._build at 0x7b87c26ee050>", "forward": "<function ActorCriticPolicy.forward at 0x7b87c26ee0e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b87c26ee170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b87c26ee200>", "_predict": "<function ActorCriticPolicy._predict at 0x7b87c26ee290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b87c26ee320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b87c26ee3b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b87c26ee440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b87c26e6980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690186610952737954, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZUA7yoP7k/01CyvHuxZb5n6l88dbwvvQAAAAAAAAAAAGGUPtb5kj/qie4+CyEhv9OSvT74IHc9AAAAAAAAAACA/yg9QSkFvQxNMz3m1R2+im6cOOw8gjwAAIA/AACAPzOAEz0psDC61jCsuwcOODVO9562i0+ntAAAAAAAAAAAcyMHvpGIzz5dnTE9Q0sTv/7Sk70arsw9AAAAAAAAAAB6Qi2+ymQGPDFDxj3mz+W7ekGTveKW1jwAAIA/AACAP5PnGD5+Ejg/3skUPjDgF79LhC8+qcoDvQAAAAAAAAAAzcpfPoIVAz9xZcw8hmbkvlXgUD50Xoa9AAAAAAAAAAAaAj2+6mhsP01BbL7VBBi/vqt8vnu6RrwAAAAAAAAAAJq5LT5uUp68ecsRO9DXYbmHRQq+hkqCugAAgD8AAIA/zUwkPXyPWz27eaq9J+OZvs37GjxC/IG9AAAAAAAAAABt9jY+FKapvM4qObruW5A4JFkavksxejkAAIA/AACAPzPHjDy5qoU/YCUgPatTPb96YWw84qp4vQAAAAAAAAAAzXiNPcNJCrr/aMm9WWnsuCCharq6i1Y4AAAAAAAAAAAzG8w9z+sIvMX6/7wCO9o8GmBXvRzvsj0AAIA/AACAPwanOL7UAoe8XtfZOqpuMDnQqeo94iwTugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHS+XJHRTmMAWyUS/eMAXSUR0CYGDNh3JPqdX2UKGgGR0BwNHRc/t6YaAdLumgIR0CYGSPzWf9QdX2UKGgGR0Bwr5n13+uOaAdNBwFoCEdAmBnjxsl9jXV9lChoBkdAcZR+az/p+2gHS9BoCEdAmBoNkWhysHV9lChoBkdAcd4P/7zkIWgHS8FoCEdAmBoxBiTdL3V9lChoBkdAchPzdUKiPGgHS9toCEdAmBqAx33Yc3V9lChoBkdAcej+IdlunGgHS5doCEdAmBrKK1og3nV9lChoBkdAcHv3u/k/8mgHS9VoCEdAmBsjeGfwqnV9lChoBkdAc8g4yGi5/mgHS/5oCEdAmBtLLZBcA3V9lChoBkdAcMyCk43m3mgHS+FoCEdAmBvUO3DvVnV9lChoBkdANx8vIwM6R2gHS65oCEdAmBwuI68xsXV9lChoBkdAcheLm6oVEmgHS9ZoCEdAmBxT9bX6InV9lChoBkdAdJuKc/dIoWgHS7xoCEdAmBxv/FR51XV9lChoBkdAcc6h9LHuJGgHS85oCEdAmB2njdYW+HV9lChoBkdAcmZvysjmjmgHS+JoCEdAmB3xD1Gsm3V9lChoBkdAcTHdOIqLCWgHS8BoCEdAmB7Y24uscXV9lChoBkdAcheQfZElV2gHS/FoCEdAmB9814xDcHV9lChoBkdAcNqlWwNb1WgHS71oCEdAmB+oGyHEdnV9lChoBkdAcfU2Jiy6c2gHS95oCEdAmB/xQWN3n3V9lChoBkdAcIulLeyiVWgHS8FoCEdAmCAnG0eEI3V9lChoBkdAbvZm8M/hVGgHS85oCEdAmCC2i5/b03V9lChoBkdAbp6YAsCkoGgHS7loCEdAmCC4sEq2B3V9lChoBkdAcFZcR15jY2gHS7RoCEdAmCEhqKxcFHV9lChoBkdAcZLeE7GNrGgHS9RoCEdAmCId3W4EwHV9lChoBkdAb3lZbILgGmgHTWoDaAhHQJgi8kfLcKx1fZQoaAZHQHKJbEUCaJBoB0vIaAhHQJgjN/I8yN51fZQoaAZHQHJiPmknCwdoB01SAWgIR0CYI4X531SPdX2UKGgGR0By3wl5WzWxaAdNFwFoCEdAmCO2HUMG5nV9lChoBkdAcay2EkB0ZGgHS9poCEdAmCP3pr1ui3V9lChoBkdAclDY7JW/8GgHS8NoCEdAmCQ28/UvwnV9lChoBkdAX/mvpyIYWWgHTegDaAhHQJgkV4mkWRB1fZQoaAZHQHLo+RDCxeNoB0vCaAhHQJgks4ZMtbt1fZQoaAZHQG/eXW4EwFloB0u+aAhHQJgkwLUkOZt1fZQoaAZHQHIbRNEgGKRoB0vDaAhHQJglON83Mpx1fZQoaAZHQG2c4MfA9FFoB0uxaAhHQJglQOZssQN1fZQoaAZHQHESMhkiD/VoB0vOaAhHQJglS1kUbkx1fZQoaAZHQG/8yIHkcS5oB0uvaAhHQJglh8stkFx1fZQoaAZHQHEHadH2AXloB0vraAhHQJgmn/dZaFF1fZQoaAZHQHGc2UGFBY5oB0u8aAhHQJgmvdKujh11fZQoaAZHQHAVQgX/HYJoB0vDaAhHQJgnkILPUrl1fZQoaAZHQHHpu9OARTVoB0vFaAhHQJgn3cUM5Ot1fZQoaAZHQG7sAPNFBppoB0u4aAhHQJgoQkgOjIt1fZQoaAZHQHDGJNKyv9toB0vfaAhHQJgpAvN/vv11fZQoaAZHQHBn0iQkondoB0v7aAhHQJgpjxJ/XoV1fZQoaAZHQHHxK+BYmsxoB0vjaAhHQJgpqFN+LFZ1fZQoaAZHQHG8QHmig01oB0vnaAhHQJgqahGpdbB1fZQoaAZHQHE05uqFRHhoB0vSaAhHQJgqfkbPyCp1fZQoaAZHQHGiYRAbADdoB0vbaAhHQJgqzg/C66J1fZQoaAZHQHG/QZn+Q2doB0u9aAhHQJgrfD2rXDp1fZQoaAZHQD0lIH1OCXhoB0teaAhHQJgrhsguAZt1fZQoaAZHQHQxli8WbgFoB0vFaAhHQJgr0pQUHpt1fZQoaAZHQHKCXtjTa0xoB00TAWgIR0CYLDkq+ajOdX2UKGgGR0BwemdK/VRUaAdLq2gIR0CYLMv0h/y5dX2UKGgGR0BxX+4ZuQ6qaAdL0GgIR0CYLWLf1pTNdX2UKGgGR0BzCaXLNfPYaAdLu2gIR0CYL9P3SKFadX2UKGgGR0Bw/n8VHnU2aAdLzGgIR0CYMFFBIFvAdX2UKGgGR0BwZhw2l2vCaAdLsWgIR0CYMLY3eenRdX2UKGgGR0By+UblzU7TaAdL9WgIR0CYMLVjqfOEdX2UKGgGR0BxpQGFBY3eaAdL0mgIR0CYMPAuZkTYdX2UKGgGR0BV1sIu5BkaaAdLv2gIR0CYMTHzH0btdX2UKGgGR0BxWzi3ocJdaAdLuGgIR0CYMVmapgkUdX2UKGgGR0BxRQVXV9WqaAdNzgFoCEdAmDJRjSXt0HV9lChoBkdAb/AK5TZQHmgHS8BoCEdAmDNz9S/CZXV9lChoBkdAcXS2X9itrGgHS+toCEdAmDQxdD6WPnV9lChoBkdAcy/rRSgoPWgHTRwBaAhHQJg1I7IT4+N1fZQoaAZHQGJ6KKYRdyFoB03oA2gIR0CYNYuIRAbAdX2UKGgGR0Bx71lEqlP8aAdLvGgIR0CYNtSZjQRgdX2UKGgGR0Bt73kHUtqYaAdLq2gIR0CYN4NH6MzedX2UKGgGR0BwALPNVzZIaAdLzGgIR0CYOF2MsH0LdX2UKGgGR0Bxb956dDpkaAdL62gIR0CYOWeb/ffodX2UKGgGR0Bw7vXUYsNEaAdL3GgIR0CYOXDgIhQndX2UKGgGR0BxlfSeAd4naAdLu2gIR0CYOZPnSv1UdX2UKGgGR0BBvVEd/8VIaAdLjWgIR0CYOgPNmlImdX2UKGgGR0BzJhMJx//eaAdNCAFoCEdAmDqeOKfnOnV9lChoBkdAc13SqlxffGgHTSMBaAhHQJg6nNorWiF1fZQoaAZHQHMITIikftBoB0vKaAhHQJg7jR/mT1V1fZQoaAZHQHHW5aaCtihoB0vCaAhHQJg9MsBhhH91fZQoaAZHQG2tToUzsQdoB0vLaAhHQJg+FjFyaNN1fZQoaAZHQHFsbZSNwR5oB0v2aAhHQJhBCuW8h9t1fZQoaAZHQFI5vi97F85oB0ugaAhHQJhBIMNMGot1fZQoaAZHQHKveBxxT85oB0vXaAhHQJhBNamoBJZ1fZQoaAZHQG5qcxKxs2xoB0u6aAhHQJhBd65XlsB1fZQoaAZHQEPBXEIgNgBoB0uVaAhHQJhBiJDVpbl1fZQoaAZHQHLdmhZha1VoB0vIaAhHQJhBlhQWN3p1fZQoaAZHQHLhKij+JgtoB00DAWgIR0CYQe3++/QCdX2UKGgGR0BvNwkVvddnaAdL5GgIR0CYQk07bL2YdX2UKGgGR0ByobjIaLn+aAdL52gIR0CYQmUn5SFXdX2UKGgGR0BwfJAB1cMWaAdL5WgIR0CYQyGxUvPDdX2UKGgGR0BWAVBt1p0waAdLpGgIR0CYQ78nNPgvdX2UKGgGR0BgiDpeNT99aAdN6ANoCEdAmERRE8aGYnV9lChoBkdAZV+svqTr3WgHTegDaAhHQJhEy9du5z51fZQoaAZHQHInjps41gpoB0ulaAhHQJhF56u4gA91fZQoaAZHQG7wxF7Uoa1oB0u2aAhHQJhGU3Mpw0h1fZQoaAZHQG7OCvxH5JtoB0vIaAhHQJhHK3c580F1fZQoaAZHQG516be/Ho5oB0u9aAhHQJhH1wKjSG91fZQoaAZHQHHhqKtPpINoB0vkaAhHQJhIM3VCojx1fZQoaAZHQGJy6Zpi7TVoB03oA2gIR0CYSHIYWLxadX2UKGgGR0BxmT3Cbc46aAdL/WgIR0CYSHYeT3ZgdX2UKGgGR0ByZAzi0fHQaAdL52gIR0CYSKTcIqsmdX2UKGgGR0BxlwpI+W4WaAdL7GgIR0CYSSM7lq8EdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |