File size: 4,699 Bytes
579f1bb
 
 
 
 
 
2131e4f
 
13a6615
 
2131e4f
 
13a6615
5f240a2
13a6615
 
 
26d12cd
f210d37
 
 
13a6615
 
 
f6d16c2
 
13a6615
 
 
 
 
f6d16c2
13a6615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26d12cd
13a6615
 
 
26d12cd
13a6615
 
 
 
 
 
 
 
 
 
 
 
 
 
26d12cd
13a6615
2131e4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
license: apache-2.0
language:
- zh
tags:
- legal
datasets:
- ShengbinYue/DISC-Law-SFT
---

This repository contains the DISC-LawLLM, version of Baichuan-13b-base as the base model.

<div align="center">
  
 [Technical Report](https://arxiv.org/abs/2309.11325)
</div>

DISC-LawLLM is a large language model specialized in Chinese legal domain, developed and open-sourced by [Data Intelligence and Social Computing Laboratory of Fudan University  (Fudan-DISC)](http://fudan-disc.com),which aim to provide comprehensive intelligent legal services. The advtantages of our DISC-LawLLM is as follow:
* **Legal Texts Generic Processing Capability** 
* **Legal Thinking and Reasoning** 
* **Legal knowledge Retrieval Capacity** 

In addition, the contributions include:

* **High-quality SFT datasets and effective training paradigms**
* **Chinese legal LLMs evaluation framework**
  
Check our [HOME](https://github.com/FudanDISC/DISC-LawLLM) for more information. 

# DISC-Law-SFT Dataset

we construct a high-quality supervised fine-tuning dataset, DISC-Law-SFT with two subsets, namely DISC-Law-SFT-Pair and DISC-Law-SFT-Triplet.  Our dataset converge a range of legal tasks, including legal information extraction, judgment prediction, document summarization, and legal question answering, ensuring coverage of diverse scenarios.
<img src="" alt="" width=""/>

<table>
  <tr>
    <th>Dataset</th>
    <th>Task/Source</th>
    <th>Size</th>
    <th>Scenario</th>
  </tr>
  <tr>
    <td rowspan="10">DISC-LawLLM-SFT-Pair</td>
    <td>Legal information extraction</td>
    <td>32K</td>
    <td rowspan="7">Legal professional assistant</td>
  </tr>
  <tr>
    <td>Legal event detection</td>
    <td>27K</td>
  </tr>
  <tr>
    <td>Legal case classification</td>
    <td>20K</td>
  </tr>
  <tr>
    <td>Legal judgement prediction</td>
    <td>11K</td>
  </tr>
  <tr>
    <td>Legal case matching</td>
    <td>8K</td>
  </tr>
  <tr>
    <td>Legal text summarization</td>
    <td>9K</td>
  </tr>
  <tr>
    <td>Judicial public opinion summarization</td>
    <td>6K</td>
  </tr>
  <tr>
    <td>Legal question answering</td>
    <td>93K</td>
    <td>Legal consultation services</td>
  </tr>
  <tr>
    <td>Legal reading comprehension</td>
    <td>38K</td>
    <td rowspan="2">Judicial examination assistant</td>
  </tr>
  <tr>
    <td>Judicial examination</td>
    <td>12K</td>
  </tr>
  <tr>
    <td rowspan="2">DISC-LawLLM-SFT-Triple</td>
    <td>Legal judgement prediction</td>
    <td>16K</td>
    <td>Legal professional assistant</td>
  </tr>
  <tr>
    <td>Legal question answering</td>
    <td>23K</td>
    <td>Legal consultation services</td>
  </tr>
  <tr>
    <td rowspan="2">General</td>
    <td>Alpaca-GPT4</td>
    <td>48K</td>
    <td rowspan="2">General scenarios</td>
  </tr>
  <tr>
    <td>Firefly</td>
    <td>60K</td>
  </tr>
  <tr>
    <td>Total</td>
    <td colspan="3">403K</td>
  </tr>
</table>

# Using through hugging face transformers

```python
>>>import torch
>>>>>>from transformers import AutoModelForCausalLM, AutoTokenizer
>>>from transformers.generation.utils import GenerationConfig
>>>tokenizer = AutoTokenizer.from_pretrained("ShengbinYue/DISC-LawLLM", use_fast=False, trust_remote_code=True)
>>>model = AutoModelForCausalLM.from_pretrained("ShengbinYue/DISC-LawLLM", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True)
>>>model.generation_config = GenerationConfig.from_pretrained("ShengbinYue/DISC-LawLLM")
>>>messages = []
>>>messages.append({"role": "user", "content": "生产销售假冒伪劣商品罪如何判刑?"})
>>>response = model.chat(tokenizer, messages)
>>>print(response)
```

# Disclaimer

DISC-LawLLM comes with issues and limitations that current LLMs have yet to overcome. While it can provide Chinese legal services in many a wide variety of tasks and scenarios, the model should be used for reference purposes only and cannot replace professional lawyers and legal experts. We encourage users of DISC-LawLLM to evaluate the model critically. We do not take responsibility for any issues, risks, or adverse consequences that may arise from the use of DISC-LawLLM.

# Citation

If our work is helpful for your, please kindly cite our work as follows:

```
@misc{yue2023disclawllm,
    title={DISC-LawLLM: Fine-tuning Large Language Models for Intelligent Legal Services}, 
    author={Shengbin Yue and Wei Chen and Siyuan Wang and Bingxuan Li and Chenchen Shen and Shujun Liu and Yuxuan Zhou and Yao Xiao and Song Yun and Wei Lin and Xuanjing Huang and Zhongyu Wei},
    year={2023},
    eprint={2309.11325},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

# License

DISC-LawLLM is available under the Apache License.