File size: 2,739 Bytes
64cb4fe fa65054 64cb4fe e96b2d3 998af70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
datasets:
- nkp37/OpenVid-1M
base_model:
- ali-vilab/i2vgen-xl
- THUDM/CogVideoX-5b
tags:
- video super-resolution
---
# STAR: Spatial-Temporal Augmentation with Text-to-Video Models for Real-World Video Super-Resolution
### Code: https://github.com/NJU-PCALab/STAR
### Paper: https://arxiv.org/abs/2501.02976
### Project Page: https://nju-pcalab.github.io/projects/STAR
### Demo Video: https://youtu.be/hx0zrql-SrU
## ⚙️ Dependencies and Installation
```
## git clone this repository
git clone https://github.com/NJU-PCALab/STAR.git
cd STAR
## create an environment
conda create -n star python=3.10
conda activate star
pip install -r requirements.txt
sudo apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
```
## 🚀 Inference
### Model Weight
| Base Model | Type | URL |
|------------|--------|-----------------------------------------------------------------------------------------------|
| I2VGen-XL | Light Degradation | [:link:](https://huggingface.co/SherryX/STAR/resolve/main/I2VGen-XL-based/light_deg.pt?download=true) |
| I2VGen-XL | Heavy Degradation | [:link:](https://huggingface.co/SherryX/STAR/resolve/main/I2VGen-XL-based/heavy_deg.pt?download=true) |
| CogVideoX-5B | Heavy Degradation | [:link:](https://huggingface.co/SherryX/STAR/tree/main/CogVideoX-5B-based) |
### 1. I2VGen-XL-based
#### Step 1: Download the pretrained model STAR from [HuggingFace](https://huggingface.co/SherryX/STAR).
We provide two verisions for I2VGen-XL-based model, `heavy_deg.pt` for heavy degraded videos and `light_deg.pt` for light degraded videos (e.g., the low-resolution video downloaded from video websites).
You can put the weight into `pretrained_weight/`.
#### Step 2: Prepare testing data
You can put the testing videos in the `input/video/`.
As for the prompt, there are three options: 1. No prompt. 2. Automatically generate a prompt [using Pllava](https://github.com/hpcaitech/Open-Sora/tree/main/tools/caption#pllava-captioning). 3. Manually write the prompt. You can put the txt file in the `input/text/`.
#### Step 3: Change the path
You need to change the paths in `video_super_resolution/scripts/inference_sr.sh` to your local corresponding paths, including `video_folder_path`, `txt_file_path`, `model_path`, and `save_dir`.
#### Step 4: Running inference command
```
bash video_super_resolution/scripts/inference_sr.sh
```
If you encounter an OOM problem, you can set a smaller `frame_length` in `inference_sr.sh`.
### 2. CogVideoX-based
Refer to these [instructions](https://github.com/NJU-PCALab/STAR/tree/main/cogvideox-based#cogvideox-based-model-inference) for inference with the CogVideX-5B-based model.
Please note that the CogVideX-5B-based model supports only 720x480 input. |