--- library_name: peft tags: - generated_from_trainer base_model: 152334H/miqu-1-70b-sf model-index: - name: Senku-70B-Full results: [] license: cc0-1.0 datasets: - Open-Orca/SlimOrca --- # ShinojiResearch/Senku-70B-Full [](Senku-70B-Full) ## UPDATE: **85.09** EQ-Bench with ChatML teamplate * EQ-Bench: (Mistral) *84.89* -> **85.09** (ChatML) * GSM8k: (Mistral) *77.18* -> **71.04** (ChatML) * Hellaswag: (Mistral) 87.67 -> ?? Finetune of miqu-70b-sf dequant of miqudev's leak of Mistral-70B (allegedly an early mistral medium). My diffs are available under CC-0 (That is the Senku-70B repo, full includes the merge), this is a merge with the leaked model, you can use the other repository to save bandwidth. **Update**: Upon further testing a score of **85.09** was achieved using ChatML instead of Mistral's prompt. ## Prompt Template I recommend using the ChatML format instead, I will run more benchmarks. This also fixes the bug with Miqu dequant failing to provide a stop. ``` <|im_start|>system Provide some context and/or instructions to the model. <|im_end|> <|im_start|>user The user’s message goes here <|im_end|> <|im_start|>assistant <|im_end|> ``` ## Kudos `Credit to https://twitter.com/hu_yifei for providing GSM & Hellaswag. It is the first open weight model to dethrone GPT-4 on EQ bench.` ## Base Model Details This model is a fine-tuned version of [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) on the Slimorca dataset. It achieves the following results on the evaluation set: - Loss: 0.3110 ## Training procedure [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: 152334H/miqu-1-70b-sf model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: Open-Orca/SlimOrca type: sharegpt conversation: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9043 | 0.0 | 1 | 0.6387 | | 0.5612 | 0.25 | 881 | 0.3279 | | 0.6044 | 0.5 | 1762 | 0.3177 | | 0.6592 | 0.75 | 2643 | 0.3110 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0