--- base_model: - FacebookAI/xlm-roberta-large datasets: - google/xtreme language: - en library_name: transformers license: mit metrics: - f1 - accuracy - precision - recall pipeline_tag: token-classification model-index: - name: xlm-roberta-large-panx-en results: - task: type: token-classification name: Token Classification dataset: name: google/xtreme type: google/xtreme config: PAN-X.en split: validation metrics: - type: precision value: 0.834659287443791 name: Precision - type: recall value: 0.852891276685989 name: Recall - type: f1 value: 0.8436767945176742 name: F1 - type: accuracy value: 0.9357306049468561 name: Accuracy --- # XLM-RoBERTa-Large-PANX-WikiAnn-en This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the [google/xtreme](https://huggingface.co/datasets/google/xtreme) dataset (English split of the PAN-X). It achieves the following results on the evaluation set: - Loss: 0.2569 - Precision: 0.8347 - Recall: 0.8529 - F1: 0.8437 - Accuracy: 0.9357 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1