--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlm-roberta-large_product_classifier results: [] --- # xlm-roberta-large_product_classifier This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3981 - Accuracy: 0.8169 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 490 | 0.8869 | 0.7423 | | 1.3297 | 2.0 | 980 | 0.7796 | 0.7798 | | 0.7265 | 3.0 | 1470 | 0.7592 | 0.7872 | | 0.5509 | 4.0 | 1960 | 0.8112 | 0.7949 | | 0.4258 | 5.0 | 2450 | 0.8498 | 0.7875 | | 0.3307 | 6.0 | 2940 | 0.8326 | 0.8036 | | 0.2702 | 7.0 | 3430 | 0.8833 | 0.8066 | | 0.2078 | 8.0 | 3920 | 0.9260 | 0.8066 | | 0.1571 | 9.0 | 4410 | 0.9800 | 0.8087 | | 0.1242 | 10.0 | 4900 | 1.0725 | 0.8043 | | 0.0962 | 11.0 | 5390 | 1.2147 | 0.7946 | | 0.0857 | 12.0 | 5880 | 1.1705 | 0.8123 | | 0.0667 | 13.0 | 6370 | 1.2551 | 0.8041 | | 0.052 | 14.0 | 6860 | 1.2762 | 0.8184 | | 0.0414 | 15.0 | 7350 | 1.3442 | 0.8115 | | 0.0313 | 16.0 | 7840 | 1.3510 | 0.8130 | | 0.0247 | 17.0 | 8330 | 1.3754 | 0.8133 | | 0.0158 | 18.0 | 8820 | 1.3915 | 0.8135 | | 0.0162 | 19.0 | 9310 | 1.3975 | 0.8186 | | 0.0109 | 20.0 | 9800 | 1.3981 | 0.8169 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 2.21.0 - Tokenizers 0.21.0