--- library_name: transformers datasets: - Sigurdur/talromur-rosa language: - is base_model: - facebook/mms-tts pipeline_tag: text-to-speech --- # Model Card for Model ID This is a text-to-speach model for Icelandic, it is finetuned from ``facebook/mms-tts-isl`` with the dataset Talrómur (see https://repository.clarin.is/repository/xmlui/handle/20.500.12537/330) ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Sigurdur Haukur Birgisson - **Model type:** [VITS](https://huggingface.co/docs/transformers/model_doc/vits) - **Language(s) (NLP):** Icelandic, isl - **License:** [More Information Needed] - **Finetuned from model:** [facebook/mms-tts-isl](https://huggingface.co/facebook/mms-tts-isl) ## Uses This model should be used for text-to-speach applications for Icelandic. ### Direct Use ```py from transformers import VitsModel, AutoTokenizer import scipy.io.wavfile as wav import torch model = VitsModel.from_pretrained("Sigurdur/vits_icelandic_rosa_female_monospeaker") tokenizer = AutoTokenizer.from_pretrained("Sigurdur/vits_icelandic_rosa_female_monospeaker") text = "Góðan daginn! Ég heiti Rósa, ég er talgervill" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform sampling_rate = getattr(sampling_rate, "sampling_rate", 16000) # Default to 16kHz if not set if not (0 <= sampling_rate <= 65535): raise ValueError(f"Invalid sampling rate: {sampling_rate}") waveform = output.squeeze().cpu().numpy() # Remove batch dimension if present ``` To save output to file ```py wav.write("output.wav", rate=sampling_rate, data=waveform) ``` To view in jupyter notebook ```py from IPython.display import Audio # show audio player for "output.wav" Audio(output, rate=sampling_rate) ``` ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ### Training Data [More Information Needed] #### Training Hyperparameters - **Training regime:** fp16 #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors Sigurdur Haukur Birgisson ## Model Card Contact Feel free to contact me through Linkedin: [Sigurdur Haukur Birgisson](https://www.linkedin.com/in/sigurdur-haukur-birgisson/)