Update README.md (#2)
Browse files- Update README.md (507091618a1108769d6536f09c898d81e3a92ff2)
Co-authored-by: Yiqin Tan <tyq1024@users.noreply.huggingface.co>
README.md
CHANGED
@@ -1,3 +1,67 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-to-image
|
6 |
+
tags:
|
7 |
+
- text-to-image
|
8 |
---
|
9 |
+
|
10 |
+
# Latent Consistency Models
|
11 |
+
|
12 |
+
Official Repository of the paper: *[Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://arxiv.org/abs/2310.04378)*.
|
13 |
+
|
14 |
+
Project Page: https://latent-consistency-models.github.io
|
15 |
+
|
16 |
+
|
17 |
+
<p align="center">
|
18 |
+
<img src="teaser.png">
|
19 |
+
</p>
|
20 |
+
|
21 |
+
By distilling classifier-free guidance into the model's input, LCM can generate high-quality images in very short inference time. We compare the inference time at the setting of 768 x 768 resolution, CFG scale w=8, batchsize=4, using a A800 GPU.
|
22 |
+
|
23 |
+
<p align="center">
|
24 |
+
<img src="speed_fid.png">
|
25 |
+
</p>
|
26 |
+
|
27 |
+
## Usage
|
28 |
+
|
29 |
+
You can try out Latency Consistency Models directly on:
|
30 |
+
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model)
|
31 |
+
|
32 |
+
To run the model yourself, you can leverage the 🧨 Diffusers library:
|
33 |
+
1. Install the library:
|
34 |
+
```
|
35 |
+
pip install diffusers transformers accelerate
|
36 |
+
```
|
37 |
+
|
38 |
+
2. Run the model:
|
39 |
+
```py
|
40 |
+
from diffusers import DiffusionPipeline
|
41 |
+
import torch
|
42 |
+
|
43 |
+
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img")
|
44 |
+
|
45 |
+
# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
|
46 |
+
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
|
47 |
+
|
48 |
+
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
|
49 |
+
|
50 |
+
# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
|
51 |
+
num_inference_steps = 4
|
52 |
+
|
53 |
+
images = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil", custom_revision=main).images
|
54 |
+
```
|
55 |
+
|
56 |
+
## BibTeX
|
57 |
+
|
58 |
+
```bibtex
|
59 |
+
@misc{luo2023latent,
|
60 |
+
title={Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference},
|
61 |
+
author={Simian Luo and Yiqin Tan and Longbo Huang and Jian Li and Hang Zhao},
|
62 |
+
year={2023},
|
63 |
+
eprint={2310.04378},
|
64 |
+
archivePrefix={arXiv},
|
65 |
+
primaryClass={cs.CV}
|
66 |
+
}
|
67 |
+
```
|