Upload echo.ipynb
Browse files- echo.ipynb +1160 -0
echo.ipynb
ADDED
@@ -0,0 +1,1160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import base64, gzip, math, os, functools, warnings, numpy as np, torch, transformers, aiohttp, torch.nn.functional as F, evaluate, json, random\n",
|
10 |
+
"from torch import Tensor, amp, optim, nn\n",
|
11 |
+
"from torch.utils.checkpoint import checkpoint\n",
|
12 |
+
"from torch.utils.tensorboard.writer import SummaryWriter\n",
|
13 |
+
"from threading import Thread\n",
|
14 |
+
"from typing import Dict, Optional, Tuple, Union, List, Any\n",
|
15 |
+
"from transformers.modeling_utils import PreTrainedModel\n",
|
16 |
+
"from dataclasses import dataclass\n",
|
17 |
+
"from transformers.optimization import Adafactor, AdafactorSchedule\n",
|
18 |
+
"from transformers import (Seq2SeqTrainer, Seq2SeqTrainingArguments, PretrainedConfig, TrainerCallback, WhisperProcessor, WhisperFeatureExtractor, WhisperTokenizerFast)\n",
|
19 |
+
"from torch.optim import Optimizer\n",
|
20 |
+
"import evaluate\n",
|
21 |
+
"from evaluate import module\n",
|
22 |
+
"from sklearn.metrics import accuracy_score, precision_score, f1_score, recall_score\n",
|
23 |
+
"from sklearn.model_selection import KFold, train_test_split\n",
|
24 |
+
"from datasets import load_dataset, Dataset, concatenate_datasets, IterableDatasetDict, Audio, load_from_disk\n",
|
25 |
+
"from torch.nn.functional import scaled_dot_product_attention\n",
|
26 |
+
"\n",
|
27 |
+
"from accelerate import Accelerator\n",
|
28 |
+
"import matplotlib.pyplot as plt\n",
|
29 |
+
"transformers.utils.logging.set_verbosity_error()\n",
|
30 |
+
"warnings.filterwarnings(action=\"ignore\")\n",
|
31 |
+
"warnings.warn = lambda *args, **kwargs: None\n",
|
32 |
+
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
|
33 |
+
"dtype = torch.float32\n",
|
34 |
+
"torch_dtype = torch.float32\n",
|
35 |
+
"torch.set_default_dtype(dtype)\n"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": null,
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"\n",
|
45 |
+
"class Linear(nn.Linear):\n",
|
46 |
+
" def forward(self, x: Tensor) -> Tensor:# type: ignore\n",
|
47 |
+
" return F.linear(x, self.weight.to(x.dtype),\n",
|
48 |
+
" None if self.bias is None else self.bias.to(x.dtype))\n",
|
49 |
+
"\n",
|
50 |
+
"class Conv1d(nn.Conv1d):\n",
|
51 |
+
" def _conv_forward(self, x: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor:# type: ignore\n",
|
52 |
+
" return super()._conv_forward(x, weight.to(x.dtype),\n",
|
53 |
+
" None if bias is None else bias.to(x.dtype))\n",
|
54 |
+
"\n",
|
55 |
+
"class LayerNorm(nn.LayerNorm):\n",
|
56 |
+
" def forward(self, x: Tensor) -> Tensor: # type: ignore\n",
|
57 |
+
" return super().forward(x.float()).type(x.dtype) "
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"execution_count": null,
|
63 |
+
"metadata": {},
|
64 |
+
"outputs": [],
|
65 |
+
"source": [
|
66 |
+
"class CombinedRotaryEmbedding(nn.Module):\n",
|
67 |
+
" def __init__(self, base, dims, head, theta_learnable=True, rot_learnable=True,\n",
|
68 |
+
" matrix_learnable=False, freq_learnable=True):\n",
|
69 |
+
" super(CombinedRotaryEmbedding, self).__init__()\n",
|
70 |
+
"\n",
|
71 |
+
" self.base = base\n",
|
72 |
+
" self.dims = dims\n",
|
73 |
+
" self.head = head\n",
|
74 |
+
"\n",
|
75 |
+
" self.h_dim = self.dims // self.head\n",
|
76 |
+
" self.rot = (self.dims // self.head) // 2\n",
|
77 |
+
"\n",
|
78 |
+
" self.thetas = nn.Parameter(torch.zeros(self.rot))\n",
|
79 |
+
" self.r_pairs = nn.Parameter(data=torch.rand(self.rot, 2) * self.h_dim)\n",
|
80 |
+
"\n",
|
81 |
+
" self.theta_scale = nn.Parameter(torch.ones(1), requires_grad=theta_learnable)\n",
|
82 |
+
" self.rot_scale = nn.Parameter(torch.ones(1), requires_grad=rot_learnable)\n",
|
83 |
+
"\n",
|
84 |
+
" self.r_matrix = nn.Parameter(torch.eye(n=self.h_dim), requires_grad=matrix_learnable)\n",
|
85 |
+
"\n",
|
86 |
+
" freq_data = 1.0 / (self.base ** (torch.arange(start=0, end=self.h_dim, step=2).float() / self.h_dim))\n",
|
87 |
+
" self.inv_freq = nn.Parameter(freq_data, requires_grad=freq_learnable)\n",
|
88 |
+
"\n",
|
89 |
+
" self.orthogonal_reg_weight = 0.01\n",
|
90 |
+
"\n",
|
91 |
+
" def blended_rotation_matrix(self, dims, i, j, theta):\n",
|
92 |
+
" G = torch.eye(dims).to(theta.device)\n",
|
93 |
+
" G[i, i] = torch.cos(theta)\n",
|
94 |
+
" G[i, j] = -torch.sin(theta)\n",
|
95 |
+
" G[j, i] = torch.sin(theta)\n",
|
96 |
+
" G[j, j] = torch.cos(theta)\n",
|
97 |
+
"\n",
|
98 |
+
" v = torch.zeros(dims).to(theta.device)\n",
|
99 |
+
" v[i] = torch.cos(theta)\n",
|
100 |
+
" v[j] = torch.sin(theta)\n",
|
101 |
+
" H = torch.eye(dims).to(theta.device) - 2 * torch.outer(v, v) / torch.dot(v, v)\n",
|
102 |
+
"\n",
|
103 |
+
" R = torch.eye(dims).to(theta.device)\n",
|
104 |
+
" R[i, i] = torch.cos(theta)\n",
|
105 |
+
" R[i, j] = -torch.sin(theta)\n",
|
106 |
+
" R[j, i] = torch.sin(theta)\n",
|
107 |
+
" R[j, j] = torch.cos(theta)\n",
|
108 |
+
"\n",
|
109 |
+
" return (G + H + R) / 3\n",
|
110 |
+
"\n",
|
111 |
+
" def apply_blended_rotation(self, x):\n",
|
112 |
+
" adjusted_rot = int(torch.round(self.rot_scale * self.rot))\n",
|
113 |
+
" for k in range(adjusted_rot):\n",
|
114 |
+
" i, j = self.r_pairs[k].long()\n",
|
115 |
+
" theta = self.thetas[k] * self.theta_scale\n",
|
116 |
+
" B = self.blended_rotation_matrix(dims=self.h_dim, i=i, j=j, theta=theta)\n",
|
117 |
+
" x = torch.matmul(input=x, other=B)\n",
|
118 |
+
" return x\n",
|
119 |
+
"\n",
|
120 |
+
" def update_base(self, new_base):\n",
|
121 |
+
" if new_base is not None and new_base != self.base:\n",
|
122 |
+
" self.base = new_base\n",
|
123 |
+
" inv_freq = 1.0 / (self.base ** (torch.arange(start=0, end=self.h_dim, step=2).float() / self.h_dim))\n",
|
124 |
+
" self.inv_freq.data.copy_(inv_freq)\n",
|
125 |
+
" self.update_pairs()\n",
|
126 |
+
"\n",
|
127 |
+
" def reset_parameters(self):\n",
|
128 |
+
" nn.init.orthogonal_(self.r_matrix)\n",
|
129 |
+
" nn.init.zeros_(self.thetas)\n",
|
130 |
+
" nn.init.zeros_(self.r_pairs)\n",
|
131 |
+
" nn.init.ones_(self.theta_scale)\n",
|
132 |
+
" nn.init.ones_(self.rot_scale)\n",
|
133 |
+
"\n",
|
134 |
+
" def orthogonal_regularization_term(self):\n",
|
135 |
+
" loss = torch.tensor(0.0, device=self.r_matrix.device)\n",
|
136 |
+
" if self.r_matrix.requires_grad:\n",
|
137 |
+
" product = torch.matmul(self.r_matrix, self.r_matrix.t())\n",
|
138 |
+
" identity = torch.eye(self.r_matrix.size(0)).to(self.r_matrix.device)\n",
|
139 |
+
" loss = ((product - identity) ** 2).sum()\n",
|
140 |
+
" return self.orthogonal_reg_weight * loss\n",
|
141 |
+
"\n",
|
142 |
+
" def update_pairs(self):\n",
|
143 |
+
" pairs = []\n",
|
144 |
+
" while len(pairs) < self.rot:\n",
|
145 |
+
" i, j = torch.randint(0, self.h_dim - 1, (2,))\n",
|
146 |
+
" if i != j and (i, j) not in pairs and (j, i) not in pairs:\n",
|
147 |
+
" pairs.append((i, j))\n",
|
148 |
+
" self.r_pairs.data.copy_(torch.tensor(pairs, dtype=torch.float32))\n",
|
149 |
+
"\n",
|
150 |
+
" def forward(self, x, global_step=None):\n",
|
151 |
+
" if x.dim() not in [3, 4]:\n",
|
152 |
+
" raise ValueError(f\"Expected input tensor to be 3D or 4D, but got {x.dim()}D\")\n",
|
153 |
+
"\n",
|
154 |
+
" batch_size, seq_len, *rest = x.size()\n",
|
155 |
+
"\n",
|
156 |
+
" if x.dim() == 3:\n",
|
157 |
+
" dims = rest[0]\n",
|
158 |
+
" if dims != self.head * self.h_dim:\n",
|
159 |
+
" raise ValueError(f\"Expected dims ({dims}) to be compatible with head ({self.head}) * h_dim ({self.h_dim}={self.head * self.h_dim})\")\n",
|
160 |
+
" else:\n",
|
161 |
+
" head, h_dim = rest\n",
|
162 |
+
" if head != self.head or h_dim != self.h_dim:\n",
|
163 |
+
" raise ValueError(f\"For 4D input, expected head {self.head} and h_dim {self.h_dim}, but got head {head} and h_dim {h_dim}\")\n",
|
164 |
+
"\n",
|
165 |
+
" x = x.view(batch_size, seq_len, self.head, self.h_dim)\n",
|
166 |
+
" x = x.reshape(-1, self.h_dim)\n",
|
167 |
+
"\n",
|
168 |
+
" x = self.apply_blended_rotation(x)\n",
|
169 |
+
"\n",
|
170 |
+
" x = torch.matmul(input=x, other=self.r_matrix)\n",
|
171 |
+
"\n",
|
172 |
+
" x = x.view(batch_size, seq_len, self.head, self.h_dim)\n",
|
173 |
+
"\n",
|
174 |
+
" sinusoid_inp = torch.einsum('i, j -> i j', torch.arange(end=seq_len, device=x.device), self.inv_freq.to(device=x.device))\n",
|
175 |
+
" sin = sinusoid_inp.sin()[None, :, None, :]\n",
|
176 |
+
" cos = sinusoid_inp.cos()[None, :, None, :]\n",
|
177 |
+
"\n",
|
178 |
+
" x1, x2 = x[..., ::2], x[..., 1::2]\n",
|
179 |
+
" x = torch.cat(tensors=[x1 * cos - x2 * sin, x1 * sin + x2 * cos], dim=-1)\n",
|
180 |
+
" x = x.view(batch_size, seq_len, self.dims)\n",
|
181 |
+
"\n",
|
182 |
+
" return x\n",
|
183 |
+
"\n",
|
184 |
+
"class SinusoidalEmbedding(nn.Module):\n",
|
185 |
+
" def __init__(self, n_ctx, dims, checkpoint):\n",
|
186 |
+
" super().__init__()\n",
|
187 |
+
" self.n_ctx = n_ctx\n",
|
188 |
+
" self.dims = dims\n",
|
189 |
+
" self.checkpoint = checkpoint\n",
|
190 |
+
"\n",
|
191 |
+
" position = torch.arange(0, n_ctx, dtype=torch.float).unsqueeze(1)\n",
|
192 |
+
" div_term = torch.exp(torch.arange(0, dims, 2).float() * -(math.log(10000.0) / dims))\n",
|
193 |
+
" features = torch.zeros(n_ctx, dims)\n",
|
194 |
+
" features[:, 0::2] = torch.sin(position * div_term)\n",
|
195 |
+
" features[:, 1::2] = torch.cos(position * div_term)\n",
|
196 |
+
" self.register_buffer('my_big_toe', features)\n",
|
197 |
+
" self.pos_embeds = nn.Parameter(self.my_big_toe.clone())\n",
|
198 |
+
"\n",
|
199 |
+
" def forward(self, positions):\n",
|
200 |
+
" if self.checkpoint:\n",
|
201 |
+
" position_embeddings = checkpoint(lambda x: self.pos_embeds[x], positions)\n",
|
202 |
+
" else:\n",
|
203 |
+
" position_embeddings = self.pos_embeds[positions]\n",
|
204 |
+
" return F.normalize(position_embeddings, p=2, dim=-1) \n",
|
205 |
+
"\n",
|
206 |
+
"class CombinedPositionalEmbedding(nn.Module):\n",
|
207 |
+
" def __init__(self, base, dims, head, n_ctx, theta_learnable=True, rot_learnable=True, \n",
|
208 |
+
" matrix_learnable=False, freq_learnable=True, checkpoint=False):\n",
|
209 |
+
" super().__init__()\n",
|
210 |
+
" self.rotary_embedding = CombinedRotaryEmbedding(base, dims, head, theta_learnable, \n",
|
211 |
+
" rot_learnable, matrix_learnable, freq_learnable)\n",
|
212 |
+
" self.sinusoidal_embedding = SinusoidalEmbedding(n_ctx, dims, checkpoint)\n",
|
213 |
+
"\n",
|
214 |
+
" def forward(self, x, positions, global_step=None):\n",
|
215 |
+
" rotary_embed = self.rotary_embedding(x, global_step)\n",
|
216 |
+
" sinusoidal_embed = self.sinusoidal_embedding(positions)\n",
|
217 |
+
" \n",
|
218 |
+
" combined_embedding = rotary_embed + sinusoidal_embed\n",
|
219 |
+
" return combined_embedding"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"execution_count": null,
|
225 |
+
"metadata": {},
|
226 |
+
"outputs": [],
|
227 |
+
"source": [
|
228 |
+
"\n",
|
229 |
+
"class MultiheadAttention(nn.Module):\n",
|
230 |
+
" use_sdpa = True\n",
|
231 |
+
"\n",
|
232 |
+
" def __init__(self, base, dims, head, max_dist):\n",
|
233 |
+
" super().__init__()\n",
|
234 |
+
" assert dims % head == 0, \"dims must be divisible by head\"\n",
|
235 |
+
" self.head = head\n",
|
236 |
+
" self.h_dim = dims // head\n",
|
237 |
+
" assert self.h_dim % 2 == 0, \"Head dimension must be even for rotary embeddings\"\n",
|
238 |
+
"\n",
|
239 |
+
" self.query = nn.Linear(dims, dims)\n",
|
240 |
+
" self.key = nn.Linear(dims, dims, bias=False)\n",
|
241 |
+
" self.value = nn.Linear(dims, dims)\n",
|
242 |
+
" self.out = nn.Linear(dims, dims)\n",
|
243 |
+
"\n",
|
244 |
+
" def forward(self, x, xa = None, mask = None, kv_cache = None):\n",
|
245 |
+
"\n",
|
246 |
+
" q = self.query(x)\n",
|
247 |
+
"\n",
|
248 |
+
" if kv_cache is None or xa is None or self.key not in kv_cache:\n",
|
249 |
+
" k = self.key(x if xa is None else xa)\n",
|
250 |
+
" v = self.value(x if xa is None else xa)\n",
|
251 |
+
"\n",
|
252 |
+
" else:\n",
|
253 |
+
" k = kv_cache[self.key]\n",
|
254 |
+
" v = kv_cache[self.value]\n",
|
255 |
+
" wv, qk = self.qkv_attention(q=q, k=k, v=v, mask=mask)\n",
|
256 |
+
"\n",
|
257 |
+
" out = self.out(wv)\n",
|
258 |
+
" return out, qk\n",
|
259 |
+
" \n",
|
260 |
+
" def qkv_attention(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None):\n",
|
261 |
+
" \n",
|
262 |
+
" n_batch, n_ctx, dims = q.shape\n",
|
263 |
+
" scale = (dims // self.head) ** -0.25\n",
|
264 |
+
" q = q.view(*q.shape[:2], self.head, -1).permute(0, 2, 1, 3)\n",
|
265 |
+
" k = k.view(*k.shape[:2], self.head, -1).permute(0, 2, 1, 3)\n",
|
266 |
+
" v = v.view(*v.shape[:2], self.head, -1).permute(0, 2, 1, 3)\n",
|
267 |
+
"\n",
|
268 |
+
" if MultiheadAttention.use_sdpa:\n",
|
269 |
+
" a = scaled_dot_product_attention(query=q, key=k, value=v, is_causal=mask is not None and n_ctx > 1)\n",
|
270 |
+
" out = a.permute(0, 2, 1, 3).flatten(start_dim=2)\n",
|
271 |
+
" qk = None\n",
|
272 |
+
" else:\n",
|
273 |
+
" qk = (q * scale) @ (k * scale).transpose(-1, -2)\n",
|
274 |
+
" if mask is not None:\n",
|
275 |
+
" qk = qk + mask[:n_ctx, :n_ctx]\n",
|
276 |
+
" qk = qk.float()\n",
|
277 |
+
"\n",
|
278 |
+
" w = F.softmax(qk, dim=-1).to(dtype=q.dtype)\n",
|
279 |
+
" out = (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)\n",
|
280 |
+
" qk = qk.detach()\n",
|
281 |
+
"\n",
|
282 |
+
" return out, qk\n",
|
283 |
+
" "
|
284 |
+
]
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"cell_type": "code",
|
288 |
+
"execution_count": null,
|
289 |
+
"metadata": {},
|
290 |
+
"outputs": [],
|
291 |
+
"source": [
|
292 |
+
"\n",
|
293 |
+
"class AdaptiveSpanAttention(nn.Module):\n",
|
294 |
+
" def __init__(self, base, dims, head, max_dist, sharpen, win_size, max_span, temp_scale=0.01):\n",
|
295 |
+
" super().__init__()\n",
|
296 |
+
" self.max_dist = max_dist\n",
|
297 |
+
" self.win_size = win_size\n",
|
298 |
+
" self.max_span = max_span\n",
|
299 |
+
" self.temp_scale = temp_scale\n",
|
300 |
+
" self.multihead_attn = MultiheadAttention(base=base, dims=dims, head=head, max_dist=max_dist)\n",
|
301 |
+
" self.span_scale = nn.Parameter(torch.tensor(1.0))\n",
|
302 |
+
" self.sharpen = sharpen\n",
|
303 |
+
"\n",
|
304 |
+
" def forward(self, query, key, value, span_scale):\n",
|
305 |
+
" span_len = int(self.max_span * span_scale.mean().item())\n",
|
306 |
+
" span_len = min(span_len, query.shape[1], key.shape[1], value.shape[1])\n",
|
307 |
+
" eff_span = min(span_len, self.max_dist)\n",
|
308 |
+
"\n",
|
309 |
+
" q_span = query[:, :eff_span, :]\n",
|
310 |
+
" k_span = key[:, :eff_span, :]\n",
|
311 |
+
" v_span = value[:, :eff_span, :]\n",
|
312 |
+
"\n",
|
313 |
+
" batch_size, _, dims = query.shape\n",
|
314 |
+
" scale = (dims // self.multihead_attn.head) ** -0.25\n",
|
315 |
+
"\n",
|
316 |
+
" q = q_span.view(q_span.shape[0], q_span.shape[1], self.multihead_attn.head, -1).permute(0, 2, 1, 3)\n",
|
317 |
+
" k = k_span.view(k_span.shape[0], k_span.shape[1], self.multihead_attn.head, -1).permute(0, 2, 1, 3)\n",
|
318 |
+
" v = v_span.view(v_span.shape[0], v_span.shape[1], self.multihead_attn.head, -1).permute(0, 2, 1, 3)\n",
|
319 |
+
"\n",
|
320 |
+
" if self.sharpen:\n",
|
321 |
+
" temperature = 1.0 + self.temp_scale * (1.0 - span_scale.mean().item())\n",
|
322 |
+
" else:\n",
|
323 |
+
" temperature = 0.5 + self.temp_scale * span_scale.mean().item()\n",
|
324 |
+
"\n",
|
325 |
+
" attn_scores = torch.matmul(q, k.transpose(-2, -1))\n",
|
326 |
+
" attn_weights = torch.softmax((attn_scores / temperature) * scale, dim=-1)\n",
|
327 |
+
" attn_out = torch.matmul(attn_weights, v)\n",
|
328 |
+
" attn_out = attn_out.permute(0, 2, 1, 3).flatten(start_dim=2)\n",
|
329 |
+
" attn_out = attn_out.contiguous().view(batch_size, eff_span, dims)\n",
|
330 |
+
"\n",
|
331 |
+
" return attn_out, attn_weights\n",
|
332 |
+
"\n",
|
333 |
+
"\n",
|
334 |
+
"class SpanPredictor(nn.Module):\n",
|
335 |
+
" def __init__(self, dims):\n",
|
336 |
+
" super().__init__()\n",
|
337 |
+
" self.linear = nn.Linear(in_features=dims, out_features=1)\n",
|
338 |
+
"\n",
|
339 |
+
" def forward(self, global_out):\n",
|
340 |
+
" scale = torch.sigmoid(self.linear(global_out))\n",
|
341 |
+
" return scale\n",
|
342 |
+
"\n",
|
343 |
+
"\n",
|
344 |
+
"class HybridAttention(nn.Module):\n",
|
345 |
+
" def __init__(self, base, dims, head, max_dist, sharpen, win_size=32, max_span=32, slid_win=32):\n",
|
346 |
+
" super().__init__()\n",
|
347 |
+
" self.max_dist = max_dist\n",
|
348 |
+
" self.win_size = win_size\n",
|
349 |
+
" self.max_span = max_span\n",
|
350 |
+
" self.slid_win = slid_win\n",
|
351 |
+
"\n",
|
352 |
+
" self.span_pred = SpanPredictor(dims=dims)\n",
|
353 |
+
" self.dist_local = max_dist\n",
|
354 |
+
" self.dist_global = max_dist\n",
|
355 |
+
"\n",
|
356 |
+
" self.attn_local = AdaptiveSpanAttention(base=base, dims=dims, head=head, max_dist=max_dist, sharpen=sharpen, win_size=win_size, max_span=max_span)\n",
|
357 |
+
" self.attn_global = MultiheadAttention(base=base, dims=dims, head=head, max_dist=self.dist_global)\n",
|
358 |
+
" self.ln_local = LayerNorm(normalized_shape=dims)\n",
|
359 |
+
" self.ln_global = LayerNorm(normalized_shape=dims)\n",
|
360 |
+
" self.projection = Linear(in_features=2 * dims, out_features=dims)\n",
|
361 |
+
"\n",
|
362 |
+
" def forward(self, x, new_dist=None, new_base=None, xa=None, mask=None, kv_cache=None):\n",
|
363 |
+
" local = self.ln_local(x)\n",
|
364 |
+
" globe = self.ln_global(x)\n",
|
365 |
+
"\n",
|
366 |
+
" globe_out, _ = self.attn_global(globe, globe, globe)\n",
|
367 |
+
"\n",
|
368 |
+
" span_scale = self.span_pred(globe_out.mean(dim=1))\n",
|
369 |
+
"\n",
|
370 |
+
" win_size = max(1, int(self.slid_win * span_scale.mean().item()))\n",
|
371 |
+
" span_len = max(1, int(self.max_span * span_scale.mean().item()))\n",
|
372 |
+
"\n",
|
373 |
+
" effective_max_dist = min(self.max_dist, local.size(1))\n",
|
374 |
+
" local_max_dist = min(self.dist_local, span_len, win_size)\n",
|
375 |
+
" globe_max_dist = effective_max_dist\n",
|
376 |
+
"\n",
|
377 |
+
" self.attn_local.max_dist = local_max_dist\n",
|
378 |
+
" self.attn_global.max_dist = globe_max_dist\n",
|
379 |
+
"\n",
|
380 |
+
" local_out = self.slide_win(x=local, win_size=win_size, span_len=span_len, span_scale=span_scale)\n",
|
381 |
+
"\n",
|
382 |
+
" combined = torch.cat(tensors=[local_out, globe_out], dim=-1)\n",
|
383 |
+
" x = self.projection(combined)\n",
|
384 |
+
"\n",
|
385 |
+
" return x\n",
|
386 |
+
"\n",
|
387 |
+
" def slide_win(self, x, win_size, span_len, span_scale):\n",
|
388 |
+
" batch_size, seq_len, dims = x.size()\n",
|
389 |
+
" out = torch.zeros_like(x, device=x.device)\n",
|
390 |
+
"\n",
|
391 |
+
" for i in range(0, seq_len, win_size):\n",
|
392 |
+
" end = min(i + win_size, seq_len)\n",
|
393 |
+
" query = x[:, i:end, :]\n",
|
394 |
+
"\n",
|
395 |
+
" start = max(0, i - span_len + win_size)\n",
|
396 |
+
" key = x[:, start:i + span_len, :]\n",
|
397 |
+
" value = x[:, start:i + span_len, :]\n",
|
398 |
+
" attn_out, _ = self.attn_local(query, key, value, span_scale)\n",
|
399 |
+
" out[:, i:end, :] = attn_out\n",
|
400 |
+
"\n",
|
401 |
+
" return out\n",
|
402 |
+
"\n",
|
403 |
+
"\n"
|
404 |
+
]
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"cell_type": "code",
|
408 |
+
"execution_count": null,
|
409 |
+
"metadata": {},
|
410 |
+
"outputs": [],
|
411 |
+
"source": [
|
412 |
+
"\n",
|
413 |
+
"class ResidualAttention(nn.Module):\n",
|
414 |
+
" def __init__(self, base, dims, head, max_dist, win_size, max_span, hybrid, checkpoint, cross, sharpen):\n",
|
415 |
+
" super().__init__()\n",
|
416 |
+
"\n",
|
417 |
+
" if hybrid:\n",
|
418 |
+
" # print(\"HybridDrive ON\")\n",
|
419 |
+
" self.attn = HybridAttention(base=base, dims=dims, head=head, max_dist=max_dist, sharpen=sharpen)\n",
|
420 |
+
" self.attn_ln = LayerNorm(normalized_shape=dims)\n",
|
421 |
+
" else:\n",
|
422 |
+
" self.attn = MultiheadAttention(base=base, dims=dims, head=head, max_dist=max_dist)\n",
|
423 |
+
" self.attn_ln = LayerNorm(normalized_shape=dims)\n",
|
424 |
+
"\n",
|
425 |
+
" n_mlp = dims * 4\n",
|
426 |
+
" self.mlp = nn.Sequential(Linear(in_features=dims, out_features=n_mlp), nn.GELU(), Linear(in_features=n_mlp, out_features=dims))\n",
|
427 |
+
" self.mlp_ln = LayerNorm(normalized_shape=dims)\n",
|
428 |
+
"\n",
|
429 |
+
" def forward(self, x, mask=None, kv_cache=None):\n",
|
430 |
+
" x = self._attn_forward(x=x, mask=mask, kv_cache=kv_cache)\n",
|
431 |
+
" x = self._mlp_forward(x=x)\n",
|
432 |
+
" return x\n",
|
433 |
+
"\n",
|
434 |
+
" def _attn_forward(self, x, mask=None, kv_cache=None):\n",
|
435 |
+
" residual = x\n",
|
436 |
+
" x = self.attn_ln(x)\n",
|
437 |
+
"\n",
|
438 |
+
" if isinstance(self.attn, HybridAttention):\n",
|
439 |
+
" attn_output = self.attn(x) \n",
|
440 |
+
"\n",
|
441 |
+
" x = residual + attn_output\n",
|
442 |
+
" else:\n",
|
443 |
+
" attn_output, _ = self.attn(x, mask=mask, kv_cache=kv_cache) \n",
|
444 |
+
" x = residual + attn_output\n",
|
445 |
+
" return x\n",
|
446 |
+
"\n",
|
447 |
+
" def _mlp_forward(self, x):\n",
|
448 |
+
" residual = x\n",
|
449 |
+
" x = self.mlp_ln(x)\n",
|
450 |
+
" return residual + self.mlp(x)\n"
|
451 |
+
]
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"cell_type": "code",
|
455 |
+
"execution_count": null,
|
456 |
+
"metadata": {},
|
457 |
+
"outputs": [],
|
458 |
+
"source": [
|
459 |
+
"\n",
|
460 |
+
"class AudioEncoder(nn.Module):\n",
|
461 |
+
" def __init__(self, base, mels, dims, head, n_layer, n_ctx, max_dist,\n",
|
462 |
+
" win_size, max_span, hybrid, checkpoint, cross, sharpen):\n",
|
463 |
+
" super().__init__()\n",
|
464 |
+
" self.conv1 = Conv1d(in_channels=mels, out_channels=dims, kernel_size=3, padding=1)\n",
|
465 |
+
" self.conv2 = Conv1d(in_channels=dims, out_channels=dims, kernel_size=3, stride=2, padding=1)\n",
|
466 |
+
" self.pos_embed = SinusoidalEmbedding(n_ctx=n_ctx, dims=dims, checkpoint=checkpoint)\n",
|
467 |
+
" self.checkpoint = checkpoint\n",
|
468 |
+
"\n",
|
469 |
+
" self.givens_rotary = CombinedRotaryEmbedding(base=base, dims=dims, head=head)\n",
|
470 |
+
"\n",
|
471 |
+
" self.blocks = nn.ModuleList(modules=[ResidualAttention(base=base, dims=dims, head=head, max_dist=max_dist, win_size=win_size, max_span=max_span, hybrid=hybrid, checkpoint=checkpoint, cross=cross, sharpen=sharpen) for _ in range(n_layer)])\n",
|
472 |
+
"\n",
|
473 |
+
" self.ln_post = LayerNorm(normalized_shape=dims)\n",
|
474 |
+
"\n",
|
475 |
+
" def forward(self, x):\n",
|
476 |
+
" if self.checkpoint:\n",
|
477 |
+
" x = checkpoint(self._conv_forward, x)\n",
|
478 |
+
" else:\n",
|
479 |
+
" x = self._conv_forward(x)\n",
|
480 |
+
"\n",
|
481 |
+
" for block in self.blocks:\n",
|
482 |
+
" if self.checkpoint:\n",
|
483 |
+
" x = checkpoint(block, x)\n",
|
484 |
+
" else:\n",
|
485 |
+
" x = block(x)\n",
|
486 |
+
" return self.ln_post(x)\n",
|
487 |
+
"\n",
|
488 |
+
" def _conv_forward(self, x):\n",
|
489 |
+
" x = F.gelu(self.conv1(x))\n",
|
490 |
+
" x = F.gelu(self.conv2(x))\n",
|
491 |
+
" x = x.permute(0, 2, 1)\n",
|
492 |
+
" \n",
|
493 |
+
" p = self.pos_embed(torch.arange(end=x.size(dim=1), device=x.device)).unsqueeze(0)\n",
|
494 |
+
" x = (x + p).to(x.dtype)\n",
|
495 |
+
" x = self.givens_rotary(x)\n",
|
496 |
+
" return x\n"
|
497 |
+
]
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"cell_type": "code",
|
501 |
+
"execution_count": null,
|
502 |
+
"metadata": {},
|
503 |
+
"outputs": [],
|
504 |
+
"source": [
|
505 |
+
"\n",
|
506 |
+
"\n",
|
507 |
+
"class TextDecoder(nn.Module):\n",
|
508 |
+
" def __init__(self, base, vocab, dims, head, n_layer, n_ctx, max_dist,\n",
|
509 |
+
" win_size, max_span, hybrid, checkpoint, cross, sharpen):\n",
|
510 |
+
" super().__init__()\n",
|
511 |
+
" \n",
|
512 |
+
" self.tok_embed = nn.Embedding(num_embeddings=vocab, embedding_dim=dims)\n",
|
513 |
+
" self.pos_embed = SinusoidalEmbedding(n_ctx=n_ctx, dims=dims, checkpoint=checkpoint)\n",
|
514 |
+
" self.checkpoint = checkpoint\n",
|
515 |
+
"\n",
|
516 |
+
" self.givens_rotary = CombinedRotaryEmbedding(base=base, dims=dims, head=head)\n",
|
517 |
+
"\n",
|
518 |
+
" self.blocks = nn.ModuleList(modules=[ResidualAttention(base=base, dims=dims, head=head, max_dist=max_dist, win_size=win_size, max_span=max_span, hybrid=hybrid, checkpoint=checkpoint, cross=cross, sharpen=sharpen) for _ in range(n_layer)])\n",
|
519 |
+
"\n",
|
520 |
+
" self.ln_post = LayerNorm(normalized_shape=dims)\n",
|
521 |
+
" self.ln = LayerNorm(normalized_shape=dims)\n",
|
522 |
+
"\n",
|
523 |
+
" mask = torch.empty(n_ctx, n_ctx).fill_(value=-np.inf).triu_(diagonal=1)\n",
|
524 |
+
" self.register_buffer(name=\"mask\", tensor=mask, persistent=False)\n",
|
525 |
+
" self.mask=mask\n",
|
526 |
+
"\n",
|
527 |
+
" def forward(self, x, xa, kv_cache=None):\n",
|
528 |
+
" if self.checkpoint:\n",
|
529 |
+
" x = checkpoint(self._embedding_forward, x, xa, kv_cache)\n",
|
530 |
+
" else:\n",
|
531 |
+
" x = self._embedding_forward(x=x, xa=xa, kv_cache=kv_cache)\n",
|
532 |
+
"\n",
|
533 |
+
" for block in self.blocks:\n",
|
534 |
+
" if self.checkpoint:\n",
|
535 |
+
" x = checkpoint(block, x, self.mask, kv_cache)\n",
|
536 |
+
" else:\n",
|
537 |
+
" x = block(x, self.mask, kv_cache)\n",
|
538 |
+
"\n",
|
539 |
+
" x = self.ln(x)\n",
|
540 |
+
" x = (x @ torch.transpose(input=self.tok_embed.weight.to(dtype=x.dtype), dim0=0, dim1=1)).float()\n",
|
541 |
+
" return x\n",
|
542 |
+
" \n",
|
543 |
+
" def _embedding_forward(self, x, xa, kv_cache):\n",
|
544 |
+
" offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0\n",
|
545 |
+
" positions = torch.arange(x.shape[1], device=x.device) + offset\n",
|
546 |
+
" pos_emb = self.pos_embed(positions).unsqueeze(0)\n",
|
547 |
+
" x = self.tok_embed(x) + pos_emb\n",
|
548 |
+
" x = self.givens_rotary(x)\n",
|
549 |
+
" return x"
|
550 |
+
]
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"cell_type": "code",
|
554 |
+
"execution_count": null,
|
555 |
+
"metadata": {},
|
556 |
+
"outputs": [],
|
557 |
+
"source": [
|
558 |
+
"class EchoConfig(PretrainedConfig):\n",
|
559 |
+
" model_type = \"Echo\"\n",
|
560 |
+
" def __init__(\n",
|
561 |
+
" self,\n",
|
562 |
+
" checkpoint=False,\n",
|
563 |
+
" cross=False,\n",
|
564 |
+
" hybrid=False,\n",
|
565 |
+
" sharpen=False,\n",
|
566 |
+
" a_ctx=1500,\n",
|
567 |
+
" a_head=16,\n",
|
568 |
+
" a_layer=8,\n",
|
569 |
+
" a_dims=1024,\n",
|
570 |
+
" mels=128,\n",
|
571 |
+
" t_ctx=448,\n",
|
572 |
+
" t_head=8,\n",
|
573 |
+
" t_layer=8,\n",
|
574 |
+
" t_dims=1024,\n",
|
575 |
+
" win_size=64,\n",
|
576 |
+
" max_span=64,\n",
|
577 |
+
" max_dist=64,\n",
|
578 |
+
" base=10000,\n",
|
579 |
+
" pad_token_id=50257,\n",
|
580 |
+
" unk_token_id=50257,\n",
|
581 |
+
" vocab=51865,\n",
|
582 |
+
" eos_token_id=50257,\n",
|
583 |
+
" bos_token_id=50257,\n",
|
584 |
+
" decoder_start_token_id=50258,\n",
|
585 |
+
" **kwargs,\n",
|
586 |
+
" ):\n",
|
587 |
+
" \n",
|
588 |
+
" super().__init__(**kwargs) \n",
|
589 |
+
" self.base = base\n",
|
590 |
+
" self.bos_token_id = bos_token_id\n",
|
591 |
+
" self.checkpoint = checkpoint\n",
|
592 |
+
" self.cross = cross\n",
|
593 |
+
" self.decoder_start_token_id = decoder_start_token_id\n",
|
594 |
+
" self.eos_token_id = eos_token_id\n",
|
595 |
+
" self.hybrid = hybrid\n",
|
596 |
+
" self.max_dist = max_dist\n",
|
597 |
+
" self.max_span = max_span\n",
|
598 |
+
" self.a_ctx = a_ctx\n",
|
599 |
+
" self.a_head = a_head\n",
|
600 |
+
" self.a_layer = a_layer\n",
|
601 |
+
" self.a_dims = a_dims\n",
|
602 |
+
" self.mels = mels\n",
|
603 |
+
" self.t_ctx = t_ctx\n",
|
604 |
+
" self.t_head = t_head\n",
|
605 |
+
" self.t_layer = t_layer\n",
|
606 |
+
" self.t_dims = t_dims\n",
|
607 |
+
" self.pad_token_id = pad_token_id\n",
|
608 |
+
" self.unk_token_id = unk_token_id\n",
|
609 |
+
" self.vocab = vocab\n",
|
610 |
+
" self.win_size = win_size\n",
|
611 |
+
" self.sharpen=sharpen\n",
|
612 |
+
"\n",
|
613 |
+
"class Echo(nn.Module):\n",
|
614 |
+
" def __init__(self, config: EchoConfig):\n",
|
615 |
+
" super().__init__()\n",
|
616 |
+
" self.config = config\n",
|
617 |
+
" \n",
|
618 |
+
" self.encoder = AudioEncoder(\n",
|
619 |
+
" base=self.config.base,\n",
|
620 |
+
" mels=self.config.mels,\n",
|
621 |
+
" dims=self.config.a_dims, \n",
|
622 |
+
" head=self.config.a_head,\n",
|
623 |
+
" n_layer=self.config.a_layer,\n",
|
624 |
+
" n_ctx=self.config.a_ctx,\n",
|
625 |
+
" max_dist=self.config.max_dist,\n",
|
626 |
+
" win_size=self.config.win_size, \n",
|
627 |
+
" max_span=self.config.max_span,\n",
|
628 |
+
" hybrid=self.config.hybrid,\n",
|
629 |
+
" checkpoint=self.config.checkpoint,\n",
|
630 |
+
" cross=self.config.cross,\n",
|
631 |
+
" sharpen=self.config.sharpen,\n",
|
632 |
+
" )\n",
|
633 |
+
"\n",
|
634 |
+
" self.decoder = TextDecoder(\n",
|
635 |
+
" base=self.config.base,\n",
|
636 |
+
" vocab=self.config.vocab,\n",
|
637 |
+
" dims=self.config.t_dims, \n",
|
638 |
+
" head=self.config.t_head,\n",
|
639 |
+
" n_layer=self.config.t_layer,\n",
|
640 |
+
" n_ctx=self.config.t_ctx,\n",
|
641 |
+
" max_dist=self.config.max_dist,\n",
|
642 |
+
" win_size=self.config.win_size, \n",
|
643 |
+
" max_span=self.config.max_span,\n",
|
644 |
+
" hybrid=self.config.hybrid,\n",
|
645 |
+
" checkpoint=self.config.checkpoint,\n",
|
646 |
+
" cross=self.config.cross,\n",
|
647 |
+
" sharpen=self.config.sharpen,\n",
|
648 |
+
" )\n",
|
649 |
+
"\n",
|
650 |
+
"\n",
|
651 |
+
" all_heads = torch.zeros(self.config.t_layer, self.config.t_head, dtype=torch.bool) \n",
|
652 |
+
" all_heads[self.config.t_layer // 2:] = True\n",
|
653 |
+
" self.register_buffer(name=\"alignment_heads\", tensor=all_heads.to_sparse(), persistent=False)\n",
|
654 |
+
"\n",
|
655 |
+
" self.base = self.config.base\n",
|
656 |
+
" self.win_size = self.config.win_size\n",
|
657 |
+
" self.adjust_counter = 0\n",
|
658 |
+
" self.best_loss = float('inf')\n",
|
659 |
+
" self.kv_cache = {}\n",
|
660 |
+
"\n",
|
661 |
+
"\n",
|
662 |
+
" @property\n",
|
663 |
+
" def device(self):\n",
|
664 |
+
" return next(self.parameters()).device\n",
|
665 |
+
"\n",
|
666 |
+
" def embed_audio(self, mel: torch.Tensor):\n",
|
667 |
+
" return self.encoder(mel)\n",
|
668 |
+
"\n",
|
669 |
+
" def logits(self, tokens: torch.Tensor, audio_features: torch.Tensor):\n",
|
670 |
+
" return self.decoder(tokens, audio_features)\n",
|
671 |
+
"\n",
|
672 |
+
" def update_window(self, new_window):\n",
|
673 |
+
" self.win_size = new_window\n",
|
674 |
+
" for module in self.modules(): \n",
|
675 |
+
" if isinstance(module, HybridAttention):\n",
|
676 |
+
" module.update_window(self.win_size)\n",
|
677 |
+
"\n",
|
678 |
+
" def adjust_window(self, loss, factor=1.00005):\n",
|
679 |
+
" if self.adjust_counter % 10 == 0:\n",
|
680 |
+
" if loss < self.best_loss:\n",
|
681 |
+
" new_window = self.win_size * factor\n",
|
682 |
+
" else:\n",
|
683 |
+
" new_window = self.win_size / factor\n",
|
684 |
+
" self.update_window(new_window=new_window)\n",
|
685 |
+
" self.best_loss = loss\n",
|
686 |
+
" self.adjust_counter += 1\n",
|
687 |
+
" return new_window\n",
|
688 |
+
" return self.win_size\n",
|
689 |
+
"\n",
|
690 |
+
" def adjust_base(self, loss, factor=1.0025) -> float | int:\n",
|
691 |
+
" if self.adjust_counter % 25 == 0:\n",
|
692 |
+
" if loss < self.best_loss:\n",
|
693 |
+
" new_base=self.base*factor\n",
|
694 |
+
" else:\n",
|
695 |
+
" new_base=self.base/factor\n",
|
696 |
+
" self.update_base(new_base=new_base)\n",
|
697 |
+
" self.base=new_base\n",
|
698 |
+
" self.best_loss=loss\n",
|
699 |
+
" self.adjust_counter += 1\n",
|
700 |
+
" return self.base\n",
|
701 |
+
" \n",
|
702 |
+
" def update_base(self, new_base):\n",
|
703 |
+
" self.new_base=new_base\n",
|
704 |
+
" for name, module in self.encoder.named_modules():\n",
|
705 |
+
" if isinstance(module, (CombinedRotaryEmbedding)):\n",
|
706 |
+
" module.update_base(new_base=self.new_base)\n",
|
707 |
+
"\n",
|
708 |
+
" @staticmethod\n",
|
709 |
+
" def shift_tokens_right(input_ids, pad_token_id, decoder_start_token_id):\n",
|
710 |
+
" shifted_input_ids = input_ids.new_zeros(input_ids.shape)\n",
|
711 |
+
" shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() \n",
|
712 |
+
" shifted_input_ids[:, 0] = decoder_start_token_id\n",
|
713 |
+
" shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)\n",
|
714 |
+
" return shifted_input_ids\n",
|
715 |
+
"\n",
|
716 |
+
" def forward(self, input_features, labels=None, dec_input_ids=None) -> dict[str, Any | None]:\n",
|
717 |
+
" if labels is not None:\n",
|
718 |
+
" if dec_input_ids is None:\n",
|
719 |
+
" dec_input_ids = self.shift_tokens_right(\n",
|
720 |
+
" input_ids=labels, pad_token_id=self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id\n",
|
721 |
+
" )\n",
|
722 |
+
"\n",
|
723 |
+
" encoded_features = self.encoder(input_features).to(self.device) \n",
|
724 |
+
" logits = self.decoder(dec_input_ids, encoded_features)\n",
|
725 |
+
"\n",
|
726 |
+
" loss = None\n",
|
727 |
+
" if labels is not None:\n",
|
728 |
+
" loss_fct = nn.CrossEntropyLoss(ignore_index=-100)\n",
|
729 |
+
" labels = labels.to(logits.device).long()\n",
|
730 |
+
" loss = loss_fct(logits.view(-1, self.config.vocab), labels.view(-1))\n",
|
731 |
+
"\n",
|
732 |
+
" self.adjust_window(loss.item())\n",
|
733 |
+
" # self.adjust_base(loss=loss.item())\n",
|
734 |
+
" return {\"loss\": loss, \"logits\": logits}\n",
|
735 |
+
"\n",
|
736 |
+
" def reset_parameters(self):\n",
|
737 |
+
" for name, module in self.encoder.named_modules():\n",
|
738 |
+
" if isinstance(module, CombinedRotaryEmbedding):\n",
|
739 |
+
" module.reset_parameters()\n",
|
740 |
+
" \n",
|
741 |
+
" def _initialize_weights(self, module):\n",
|
742 |
+
" nn.init.normal_(tensor=self.decoder.tok_embed.weight, mean=0.0, std=0.02)\n",
|
743 |
+
" nn.init.constant_(tensor=self.decoder.ln.weight, val=1)\n",
|
744 |
+
" nn.init.constant_(tensor=self.decoder.ln.bias, val=0)\n",
|
745 |
+
" nn.init.xavier_normal_(tensor=self.encoder.conv1.weight)\n",
|
746 |
+
" nn.init.zeros_(tensor=self.encoder.conv1.bias)\n",
|
747 |
+
" nn.init.kaiming_normal_(tensor=self.encoder.conv2.weight, mode='fan_out', nonlinearity='relu')\n",
|
748 |
+
" nn.init.zeros_(tensor=self.encoder.conv2.bias)\n",
|
749 |
+
" nn.init.constant_(tensor=self.encoder.ln_post.weight, val=1)\n",
|
750 |
+
" nn.init.constant_(tensor=self.encoder.ln_post.bias, val=0)\n",
|
751 |
+
"\n",
|
752 |
+
" for block in self.decoder.blocks:\n",
|
753 |
+
" for layer in block.children():\n",
|
754 |
+
" if isinstance(layer, nn.Linear):\n",
|
755 |
+
" nn.init.xavier_normal_(tensor=layer.weight)\n",
|
756 |
+
" nn.init.zeros_(tensor=layer.bias)\n",
|
757 |
+
" if isinstance(layer, LayerNorm):\n",
|
758 |
+
" nn.init.constant_(tensor=layer.weight, val=1)\n",
|
759 |
+
" \n",
|
760 |
+
" for block in self.encoder.blocks:\n",
|
761 |
+
" for layer in block.children():\n",
|
762 |
+
" if isinstance(layer, nn.Linear):\n",
|
763 |
+
" nn.init.xavier_normal_(tensor=layer.weight)\n",
|
764 |
+
" nn.init.zeros_(tensor=layer.bias)\n",
|
765 |
+
" if isinstance(layer, LayerNorm):\n",
|
766 |
+
" nn.init.constant_(tensor=layer.weight, val=1)\n",
|
767 |
+
"\n",
|
768 |
+
" for module in self.encoder.named_modules():\n",
|
769 |
+
" if isinstance(module, CombinedRotaryEmbedding):\n",
|
770 |
+
" nn.init.constant_(tensor=module.thetas, val=1)\n",
|
771 |
+
" nn.init.constant_(tensor=module.r_matrix, val=1)\n",
|
772 |
+
" nn.init.constant_(tensor=module.r_pairs, val=1)\n",
|
773 |
+
" nn.init.constant_(tensor=module.inv_freq, val=1)\n",
|
774 |
+
"\n",
|
775 |
+
" def apply_initialization(self, module):\n",
|
776 |
+
" self._initialize_weights(module=module)\n"
|
777 |
+
]
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"cell_type": "code",
|
781 |
+
"execution_count": null,
|
782 |
+
"metadata": {},
|
783 |
+
"outputs": [],
|
784 |
+
"source": [
|
785 |
+
"\n",
|
786 |
+
"from datetime import datetime\n",
|
787 |
+
"log_dir = os.path.join('./output/Echo/', datetime.now().strftime(format='%m-%d_%H'))\n",
|
788 |
+
"os.makedirs(name=log_dir, exist_ok=True)\n",
|
789 |
+
"\n",
|
790 |
+
"config = EchoConfig(\n",
|
791 |
+
" checkpoint=False,\n",
|
792 |
+
" cross=False,\n",
|
793 |
+
" hybrid=False,\n",
|
794 |
+
" sharpen=False,\n",
|
795 |
+
" audio_ctx=1500,\n",
|
796 |
+
" audio_head=4,\n",
|
797 |
+
" audio_layer=4,\n",
|
798 |
+
" audio_dims=512,\n",
|
799 |
+
" mels=128,\n",
|
800 |
+
" text_ctx=448,\n",
|
801 |
+
" text_head=4,\n",
|
802 |
+
" text_layer=4,\n",
|
803 |
+
" text_dims=512,\n",
|
804 |
+
" win_size=16,\n",
|
805 |
+
" max_span=16,\n",
|
806 |
+
" max_dist=16,\n",
|
807 |
+
" base=50000,\n",
|
808 |
+
" pad_token_id=50257,\n",
|
809 |
+
" unk_token_id=50257,\n",
|
810 |
+
" vocab=51865,\n",
|
811 |
+
" eos_token_id=50257,\n",
|
812 |
+
" bos_token_id=50257,\n",
|
813 |
+
" decoder_start_token_id=50258,\n",
|
814 |
+
")\n",
|
815 |
+
"\n",
|
816 |
+
"model = Echo(config=config).to(device=device)\n",
|
817 |
+
"model.apply_initialization(module=model)"
|
818 |
+
]
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"cell_type": "code",
|
822 |
+
"execution_count": null,
|
823 |
+
"metadata": {},
|
824 |
+
"outputs": [],
|
825 |
+
"source": [
|
826 |
+
"feature_extractor = WhisperFeatureExtractor.from_pretrained(\n",
|
827 |
+
" pretrained_model_name_or_path=\"openai/whisper-small\", \n",
|
828 |
+
" feature_size=128, sample_rate=160000, do_normalize=True)\n",
|
829 |
+
"\n",
|
830 |
+
"tokenizer = WhisperTokenizerFast.from_pretrained(\n",
|
831 |
+
" pretrained_model_name_or_path=\"openai/whisper-small\", \n",
|
832 |
+
" language=\"en\", task=\"transcribe\")\n",
|
833 |
+
"\n",
|
834 |
+
"processor = WhisperProcessor.from_pretrained(\n",
|
835 |
+
" pretrained_model_name_or_path=\"openai/whisper-small\", \n",
|
836 |
+
" feature_size=128, sample_rate=160000, do_normalize=True, \n",
|
837 |
+
" language=\"en\", task=\"transcribe\")\n",
|
838 |
+
"\n",
|
839 |
+
"class GradientClippingCallback(TrainerCallback):\n",
|
840 |
+
" def on_step_end(self, args, dims, control, **kwargs):\n",
|
841 |
+
" torch.nn.utils.clip_grad_norm_(parameters=kwargs[\"model\"].parameters(), max_norm=0.98)\n",
|
842 |
+
"\n",
|
843 |
+
"@dataclass\n",
|
844 |
+
"class DataCollatorSpeechSeq2SeqWithPadding:\n",
|
845 |
+
" processor: Any\n",
|
846 |
+
" decoder_start_token_id: int\n",
|
847 |
+
"\n",
|
848 |
+
" def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
|
849 |
+
" input_features = [{\"input_features\": feature[\"input_features\"]} for feature in features]\n",
|
850 |
+
" batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n",
|
851 |
+
" label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
|
852 |
+
" labels_batch = self.processor.tokenizer.pad(label_features, return_tensors=\"pt\")\n",
|
853 |
+
" labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
|
854 |
+
" if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():\n",
|
855 |
+
" labels = labels[:, 1:]\n",
|
856 |
+
" batch[\"labels\"] = labels\n",
|
857 |
+
" return batch\n",
|
858 |
+
"\n",
|
859 |
+
"def get_length_of_dataset(dataset):\n",
|
860 |
+
" length = 0\n",
|
861 |
+
" for item in dataset:\n",
|
862 |
+
" length += len(item[\"audio\"][\"array\"]) / item[\"audio\"][\"sampling_rate\"]\n",
|
863 |
+
" return length / 3600 \n",
|
864 |
+
"\n",
|
865 |
+
"def prepare_dataset(batch):\n",
|
866 |
+
" audio = batch[\"audio\"]\n",
|
867 |
+
" batch[\"input_features\"] = feature_extractor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_features[0]\n",
|
868 |
+
" batch[\"labels\"] = tokenizer(batch[\"sentence\"]).input_ids\n",
|
869 |
+
" return batch\n",
|
870 |
+
"\n",
|
871 |
+
"data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor, decoder_start_token_id=config.decoder_start_token_id)\n",
|
872 |
+
"\n",
|
873 |
+
"datasets = IterableDatasetDict()\n",
|
874 |
+
"\n",
|
875 |
+
"datasets[\"train\"] = load_dataset(\n",
|
876 |
+
" path=\"mozilla-foundation/common_voice_17_0\", token=\"\",\n",
|
877 |
+
" name=\"en\", split=\"train\", streaming=True, trust_remote_code=True).take(10000)\n",
|
878 |
+
"\n",
|
879 |
+
"datasets[\"test\"] = load_dataset(\n",
|
880 |
+
" path=\"mozilla-foundation/common_voice_17_0\", token=\"\", \n",
|
881 |
+
" name=\"en\", split=\"test\", streaming=True, trust_remote_code=True).take(100)\n",
|
882 |
+
"\n",
|
883 |
+
"dataset = datasets.cast_column(column=\"audio\", feature=Audio(sampling_rate=16000))\n",
|
884 |
+
"\n",
|
885 |
+
"dataset = dataset.map(function=prepare_dataset, \n",
|
886 |
+
" remove_columns=list(next(iter(dataset.values())).features)).with_format(type=\"torch\")\n",
|
887 |
+
"\n",
|
888 |
+
"class MetricsCallback(TrainerCallback):\n",
|
889 |
+
" def __init__(self, tb_writer, tokenizer, metric, optimizer, scheduler, log_every_n_steps=1):\n",
|
890 |
+
" super().__init__()\n",
|
891 |
+
" self.tb_writer = tb_writer\n",
|
892 |
+
" self.tokenizer = tokenizer\n",
|
893 |
+
" self.metric = metric\n",
|
894 |
+
" self.optimizer = optimizer\n",
|
895 |
+
" self.scheduler = scheduler\n",
|
896 |
+
" self.log_every_n_steps = log_every_n_steps\n",
|
897 |
+
" self.predictions = None\n",
|
898 |
+
" self.label_ids = None\n",
|
899 |
+
"\n",
|
900 |
+
" def compute_wer(self, pred_str, label_str):\n",
|
901 |
+
" wer = 100 * self.metric.compute(predictions=pred_str, references=label_str)\n",
|
902 |
+
" return wer\n",
|
903 |
+
"\n",
|
904 |
+
" def on_evaluate(self, args, state, control, model, metrics=None, **kwargs):\n",
|
905 |
+
" if metrics is not None:\n",
|
906 |
+
" self.eval_loss = metrics.get('eval_loss')\n",
|
907 |
+
"\n",
|
908 |
+
" current_learning_rate = self.optimizer.param_groups[0]['lr']\n",
|
909 |
+
" if state.global_step % self.log_every_n_steps == 0:\n",
|
910 |
+
" self.tb_writer.add_scalar('learning_rate', current_learning_rate, state.global_step)\n",
|
911 |
+
" print(f\"Learning Rate: {current_learning_rate:.8f}\")\n",
|
912 |
+
"\n",
|
913 |
+
" self.tb_writer.add_scalar('eval_loss', self.eval_loss, state.global_step)\n",
|
914 |
+
"\n",
|
915 |
+
" for key, value in metrics.items():\n",
|
916 |
+
" if key.startswith(\"eval_\"):\n",
|
917 |
+
" self.tb_writer.add_scalar(key, value, state.global_step)\n",
|
918 |
+
"\n",
|
919 |
+
" if self.predictions is not None and self.label_ids is not None:\n",
|
920 |
+
" pred_str = self.tokenizer.batch_decode(self.predictions, skip_special_tokens=True)\n",
|
921 |
+
" label_str = self.tokenizer.batch_decode(self.label_ids, skip_special_tokens=True)\n",
|
922 |
+
"\n",
|
923 |
+
" if state.global_step % self.log_every_n_steps == 0:\n",
|
924 |
+
" total_samples = len(pred_str)\n",
|
925 |
+
" random_indices = random.sample(range(total_samples), 1)\n",
|
926 |
+
"\n",
|
927 |
+
" for sample_index in random_indices:\n",
|
928 |
+
" self.tb_writer.add_text(f\"Prediction_{sample_index}\", pred_str[sample_index], state.global_step)\n",
|
929 |
+
" self.tb_writer.add_text(f\"Label_{sample_index}\", label_str[sample_index], state.global_step)\n",
|
930 |
+
" print(f\"Evaluation: - Step {state.global_step} - Loss: {self.eval_loss:.2f}\")\n",
|
931 |
+
" print(f\"Prediction: {pred_str[sample_index]}\")\n",
|
932 |
+
" print(f\"Label: {label_str[sample_index]}\")\n",
|
933 |
+
" print(\"-\" * 10)\n",
|
934 |
+
"\n",
|
935 |
+
" self.predictions = None\n",
|
936 |
+
" self.label_ids = None\n",
|
937 |
+
"\n",
|
938 |
+
"def create_compute_metrics(callback_instance):\n",
|
939 |
+
" def compute_metrics(eval_pred):\n",
|
940 |
+
" pred_logits = eval_pred.predictions\n",
|
941 |
+
" label_ids = eval_pred.label_ids\n",
|
942 |
+
"\n",
|
943 |
+
" if isinstance(pred_logits, tuple):\n",
|
944 |
+
" pred_ids = pred_logits[0]\n",
|
945 |
+
" else:\n",
|
946 |
+
" pred_ids = pred_logits\n",
|
947 |
+
" if pred_ids.ndim == 3:\n",
|
948 |
+
" pred_ids = np.argmax(pred_ids, axis=-1)\n",
|
949 |
+
"\n",
|
950 |
+
" label_ids[label_ids == -100] = callback_instance.tokenizer.pad_token_id\n",
|
951 |
+
" callback_instance.predictions = pred_ids\n",
|
952 |
+
" callback_instance.label_ids = label_ids\n",
|
953 |
+
" pred_str = callback_instance.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)\n",
|
954 |
+
" label_str = callback_instance.tokenizer.batch_decode(label_ids, skip_special_tokens=True)\n",
|
955 |
+
" wer = 100 * callback_instance.metric.compute(predictions=pred_str, references=label_str)\n",
|
956 |
+
" pred_flat = pred_ids.flatten()\n",
|
957 |
+
" labels_flat = label_ids.flatten()\n",
|
958 |
+
" mask = labels_flat != callback_instance.tokenizer.pad_token_id\n",
|
959 |
+
"\n",
|
960 |
+
" accuracy = accuracy_score(y_true=labels_flat[mask], y_pred=pred_flat[mask])\n",
|
961 |
+
" precision = precision_score(y_true=labels_flat[mask], y_pred=pred_flat[mask], average='weighted', zero_division=0)\n",
|
962 |
+
" recall = recall_score(y_true=labels_flat[mask], y_pred=pred_flat[mask], average='weighted', zero_division=0)\n",
|
963 |
+
" f1 = f1_score(y_true=labels_flat[mask], y_pred=pred_flat[mask], average='weighted', zero_division=0)\n",
|
964 |
+
" return {\"wer\": wer, \"accuracy\": accuracy, \"precision\": precision, \"recall\": recall, \"f1\": f1}\n",
|
965 |
+
" return compute_metrics\n",
|
966 |
+
"\n",
|
967 |
+
"metric = evaluate.load(path=\"wer\")\n",
|
968 |
+
"tb_writer = SummaryWriter(log_dir=log_dir)\n",
|
969 |
+
"\n",
|
970 |
+
"training_args = Seq2SeqTrainingArguments(\n",
|
971 |
+
" output_dir=log_dir,\n",
|
972 |
+
" per_device_train_batch_size=1,\n",
|
973 |
+
" per_device_eval_batch_size=1,\n",
|
974 |
+
" gradient_accumulation_steps=1,\n",
|
975 |
+
" eval_accumulation_steps=1,\n",
|
976 |
+
" tf32=True,\n",
|
977 |
+
" bf16=True,\n",
|
978 |
+
" eval_strategy=\"steps\",\n",
|
979 |
+
" save_strategy=\"steps\",\n",
|
980 |
+
" max_steps=10000,\n",
|
981 |
+
" save_steps=10000,\n",
|
982 |
+
" eval_steps=100,\n",
|
983 |
+
" warmup_steps=100,\n",
|
984 |
+
" logging_steps=10,\n",
|
985 |
+
" logging_dir=log_dir + \"/logs_hf\",\n",
|
986 |
+
" report_to=[\"tensorboard\"],\n",
|
987 |
+
" load_best_model_at_end=False,\n",
|
988 |
+
" metric_for_best_model=\"loss\",\n",
|
989 |
+
" greater_is_better=False,\n",
|
990 |
+
" push_to_hub=False,\n",
|
991 |
+
" disable_tqdm=False,\n",
|
992 |
+
" save_total_limit=1,\n",
|
993 |
+
" remove_unused_columns=False,\n",
|
994 |
+
" label_names=[\"labels\"],\n",
|
995 |
+
" eval_on_start=True,\n",
|
996 |
+
")\n",
|
997 |
+
"\n",
|
998 |
+
"class MaxFactor(Optimizer):\n",
|
999 |
+
" def __init__(self, params, lr=0.01, beta2_decay=-0.8, eps=(None, 1e-3), d=1.0, \n",
|
1000 |
+
" weight_decay=0.0, gamma=0.99, eps_rms=1e-8, maximize=False):\n",
|
1001 |
+
" \n",
|
1002 |
+
" defaults = dict(lr=lr, beta2_decay=beta2_decay, eps=eps, d=d, weight_decay=weight_decay, \n",
|
1003 |
+
" gamma=gamma, eps_rms=eps_rms, maximize=maximize)\n",
|
1004 |
+
"\n",
|
1005 |
+
" super().__init__(params, defaults)\n",
|
1006 |
+
"\n",
|
1007 |
+
" @torch.no_grad()\n",
|
1008 |
+
" def step(self, closure=None):\n",
|
1009 |
+
" loss = None\n",
|
1010 |
+
" if closure is not None:\n",
|
1011 |
+
" with torch.enable_grad():\n",
|
1012 |
+
" loss = closure()\n",
|
1013 |
+
"\n",
|
1014 |
+
" for group in self.param_groups:\n",
|
1015 |
+
" params_with_grad, grads, row_vars, col_vars, v, state_steps = [], [], [], [], [], []\n",
|
1016 |
+
" eps1, eps2 = group[\"eps\"]\n",
|
1017 |
+
" for p in group[\"params\"]:\n",
|
1018 |
+
" if p.grad is None:\n",
|
1019 |
+
" continue\n",
|
1020 |
+
" grad = p.grad\n",
|
1021 |
+
" if grad.dtype in {torch.float16, torch.bfloat16}:\n",
|
1022 |
+
" grad = grad.float()\n",
|
1023 |
+
"\n",
|
1024 |
+
" state = self.state[p]\n",
|
1025 |
+
" if len(state) == 0:\n",
|
1026 |
+
" state[\"step\"] = torch.tensor(0.0, dtype=torch.float32)\n",
|
1027 |
+
" if p.grad.dim() > 1:\n",
|
1028 |
+
" row_shape, col_shape = list(p.grad.shape), list(p.grad.shape)\n",
|
1029 |
+
" row_shape[-1], col_shape[-2] = 1, 1\n",
|
1030 |
+
" state[\"row_var\"], state[\"col_var\"] = p.grad.new_zeros(row_shape), p.grad.new_zeros(col_shape)\n",
|
1031 |
+
" state[\"v\"] = torch.zeros_like(p, memory_format=torch.preserve_format)\n",
|
1032 |
+
"\n",
|
1033 |
+
" row_vars.append(state.get(\"row_var\", None))\n",
|
1034 |
+
" col_vars.append(state.get(\"col_var\", None))\n",
|
1035 |
+
" v.append(state[\"v\"])\n",
|
1036 |
+
" state_steps.append(state[\"step\"])\n",
|
1037 |
+
" params_with_grad.append(p)\n",
|
1038 |
+
" grads.append(grad)\n",
|
1039 |
+
"\n",
|
1040 |
+
" for i, param in enumerate(params_with_grad):\n",
|
1041 |
+
" grad = grads[i]\n",
|
1042 |
+
"\n",
|
1043 |
+
" if group[\"maximize\"]:\n",
|
1044 |
+
" grad = -grad\n",
|
1045 |
+
" step_t, row_var, col_var, vi = state_steps[i], row_vars[i], col_vars[i], v[i]\n",
|
1046 |
+
"\n",
|
1047 |
+
" if eps1 is None:\n",
|
1048 |
+
" eps1 = torch.finfo(param.dtype).eps\n",
|
1049 |
+
" \n",
|
1050 |
+
" step_t += 1\n",
|
1051 |
+
" step_float = step_t.item()\n",
|
1052 |
+
" one_minus_beta2_t = step_float ** group[\"beta2_decay\"]\n",
|
1053 |
+
" rho_t = min(group[\"lr\"], 1 / (step_float ** 0.5))\n",
|
1054 |
+
" alpha = max(eps2, param.norm(2).item() / (param.numel() ** 0.5)) * rho_t\n",
|
1055 |
+
"\n",
|
1056 |
+
" if group[\"weight_decay\"]!= 0:\n",
|
1057 |
+
" param.mul_(1 - group[\"lr\"] * group[\"weight_decay\"])\n",
|
1058 |
+
"\n",
|
1059 |
+
" if grad.dim() > 1:\n",
|
1060 |
+
" row_mean = torch.norm(grad, dim=-1, keepdim=True).square_().div_(grad.size(-1))\n",
|
1061 |
+
" row_var.lerp_(row_mean, one_minus_beta2_t)\n",
|
1062 |
+
" col_mean = torch.norm(grad, dim=-2, keepdim=True).square_().div_(grad.size(-2))\n",
|
1063 |
+
" col_var.lerp_(col_mean, one_minus_beta2_t)\n",
|
1064 |
+
" var_estimate = row_var @ col_var\n",
|
1065 |
+
" max_row_var = row_var.max(dim=-2, keepdim=True)[0] \n",
|
1066 |
+
" var_estimate.div_(max_row_var.clamp_(min=eps1))\n",
|
1067 |
+
"\n",
|
1068 |
+
" else:\n",
|
1069 |
+
" vi.mul_(group[\"gamma\"]).add_(1 - group[\"gamma\"], grad ** 2)\n",
|
1070 |
+
" var_estimate = vi\n",
|
1071 |
+
" \n",
|
1072 |
+
" update = var_estimate.clamp_(min=eps1 * eps1).rsqrt_().mul_(grad)\n",
|
1073 |
+
" update = update.div_(torch.norm(update, float('inf')).clamp_(min=eps1))\n",
|
1074 |
+
" denom = max(1.0, update.norm(2).item() / ((update.numel() ** 0.5) * group[\"d\"]))\n",
|
1075 |
+
" param.add_(-alpha / denom * update.sign() * update.abs().max(dim=-1, keepdim=True)[0])\n",
|
1076 |
+
"\n",
|
1077 |
+
" return loss\n",
|
1078 |
+
" \n",
|
1079 |
+
"optimizer = MaxFactor(\n",
|
1080 |
+
" model.parameters(), \n",
|
1081 |
+
" lr=0.025, \n",
|
1082 |
+
" beta2_decay=-0.8,\n",
|
1083 |
+
" eps=(None, 1e-4),\n",
|
1084 |
+
" d=1.0,\n",
|
1085 |
+
" weight_decay=0.0025,\n",
|
1086 |
+
" gamma=0.99, \n",
|
1087 |
+
" eps_rms=1e-8,\n",
|
1088 |
+
" maximize=False,\n",
|
1089 |
+
" )\n",
|
1090 |
+
"\n",
|
1091 |
+
"scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(\n",
|
1092 |
+
" optimizer=optimizer,\n",
|
1093 |
+
" T_max=training_args.max_steps,\n",
|
1094 |
+
" eta_min=0.0,\n",
|
1095 |
+
" last_epoch=-1 \n",
|
1096 |
+
")\n",
|
1097 |
+
"\n",
|
1098 |
+
"metrics_callback = MetricsCallback(tb_writer=tb_writer, tokenizer=tokenizer, metric=metric, optimizer=optimizer, scheduler=scheduler, log_every_n_steps=10)\n",
|
1099 |
+
"compute_metrics = create_compute_metrics(callback_instance=metrics_callback)\n",
|
1100 |
+
"\n",
|
1101 |
+
"trainer = Seq2SeqTrainer(\n",
|
1102 |
+
" args=training_args,\n",
|
1103 |
+
" model=model,\n",
|
1104 |
+
" train_dataset=dataset[\"train\"],\n",
|
1105 |
+
" eval_dataset=dataset[\"test\"],\n",
|
1106 |
+
" data_collator=data_collator,\n",
|
1107 |
+
" compute_metrics=compute_metrics,\n",
|
1108 |
+
" processing_class=feature_extractor,\n",
|
1109 |
+
" callbacks=[metrics_callback],\n",
|
1110 |
+
" optimizers=(optimizer, scheduler)\n",
|
1111 |
+
")"
|
1112 |
+
]
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"cell_type": "code",
|
1116 |
+
"execution_count": null,
|
1117 |
+
"metadata": {},
|
1118 |
+
"outputs": [],
|
1119 |
+
"source": [
|
1120 |
+
"\n",
|
1121 |
+
"trainer.train(resume_from_checkpoint=False)"
|
1122 |
+
]
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"cell_type": "code",
|
1126 |
+
"execution_count": null,
|
1127 |
+
"metadata": {},
|
1128 |
+
"outputs": [],
|
1129 |
+
"source": [
|
1130 |
+
"from tensorboard import program\n",
|
1131 |
+
"log_dir = \"D:/new/tensorboard3\" \n",
|
1132 |
+
"tb = program.TensorBoard()\n",
|
1133 |
+
"tb.configure(argv=[None, '--logdir', log_dir])\n",
|
1134 |
+
"url = tb.launch()\n",
|
1135 |
+
"print(f\"TensorBoard started at {url}\")"
|
1136 |
+
]
|
1137 |
+
}
|
1138 |
+
],
|
1139 |
+
"metadata": {
|
1140 |
+
"kernelspec": {
|
1141 |
+
"display_name": "Python 3",
|
1142 |
+
"language": "python",
|
1143 |
+
"name": "python3"
|
1144 |
+
},
|
1145 |
+
"language_info": {
|
1146 |
+
"codemirror_mode": {
|
1147 |
+
"name": "ipython",
|
1148 |
+
"version": 3
|
1149 |
+
},
|
1150 |
+
"file_extension": ".py",
|
1151 |
+
"mimetype": "text/x-python",
|
1152 |
+
"name": "python",
|
1153 |
+
"nbconvert_exporter": "python",
|
1154 |
+
"pygments_lexer": "ipython3",
|
1155 |
+
"version": "3.12.8"
|
1156 |
+
}
|
1157 |
+
},
|
1158 |
+
"nbformat": 4,
|
1159 |
+
"nbformat_minor": 2
|
1160 |
+
}
|