Sirianth commited on
Commit
180cbda
1 Parent(s): 4250cef

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2133.06 +/- 286.25
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:045039ad5ea66cb786765176a75535a5ea31195f8f6f45d7b700267d5cce202b
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0cb3314160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0cb33141f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0cb3314280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0cb3314310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0cb33143a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0cb3314430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0cb33144c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0cb3314550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0cb33145e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0cb3314670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0cb3314700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0cb3314790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f0cb3388e70>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677351806312284308,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMinlj8Dz2G/R4MiPrNSWj+h4CO/lVI9vUMtjz7VwyO/FzlTP/Tz/7uLPjFAzJHJvnNxjL94uSY/kP9vv7P7jr6+7g+/1GdYvrwL8j38X2Q/cQpnvo4opT1oJWm/ZZ36PIpAeD/ZuNs+jR8eP6XUh79ytUo+s9mIPr3J8z7S1+U+mA9+vHK88zqjD4M+GAnOvpz1zT6pP5I+7Q5dP1+Ixj6xEQO/mwl9vxBCBr5Kzpy/5lILvpyPbb8866Q+YvWDP46bKr/BGZ083EGZvhqTEL+KQHg/2bjbPo0fHj+l1Ie/ZyknP6JqOj4dbvg+a7U2P+KAyr93ano/LKyNPrUKR7+afaa+7BG4vnqp8j+velo+NYQnv71lEMAZDoK+FiMIwEa6hL99UMm/WbchP/qpHL4piCq/jJeQPHR6M77tVM++ikB4P9m42z6NHx4/pdSHv5r0zr0TE1K+y7bsPj18BT/nMYu/SY8av2KAAj9oPGi+9nkeP4dnJL19WDA/yCbPvqvamL+gOEk/JAfdviG4fT5E+zm/NCjRPmb+FT+aWMa+7/6uvjcRCT+Vsue+AXGQP4pAeD/ZuNs+jR8eP6XUh7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAh9EC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhB9ZPQAAAACQU/C/AAAAADnZhb0AAAAAmsv4PwAAAABdaVi9AAAAAHCa7T8AAAAA8IRAvQAAAAAfNuG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOGvVNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCdvMjwAAAAAM5DvvwAAAADwCgA+AAAAAOep3j8AAAAAJT+1PAAAAAAC1eg/AAAAABDQDr4AAAAAUNvcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH2Ye7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDrcTE9AAAAAPCT9r8AAAAA68QFvgAAAADNRtw/AAAAAHjXuz0AAAAAj4zzPwAAAADBY469AAAAADJV/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiNwA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqgwHvQAAAADcy+C/AAAAAHoYwDwAAAAAdSzrPwAAAABJLBO7AAAAAAUr+T8AAAAAhnXmvAAAAACwnfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQzAohIOH6MAWyUTegDjAF0lEdAqehMfozN2XV9lChoBkdAnNyYVRDTjWgHTegDaAhHQKnr05cTrVx1fZQoaAZHQJ1ST4REnb9oB03oA2gIR0Cp8Y3+l0o0dX2UKGgGR0CXMt2ECeVcaAdN6ANoCEdAqfQDCSA6MnV9lChoBkdAmpvs+mm+CmgHTegDaAhHQKn1qxWT5ft1fZQoaAZHQJzyP18LKFJoB03oA2gIR0Cp+TsLORkmdX2UKGgGR0CNJME4ecQRaAdN6ANoCEdAqf8YmzByj3V9lChoBkdAnsqrBfrrxGgHTegDaAhHQKoBqxPfsNV1fZQoaAZHQJ1lNgZ0jkdoB03oA2gIR0CqA0rtVrAQdX2UKGgGR0CWQSgssg+yaAdN6ANoCEdAqgbnnGKhtnV9lChoBkdAn+lMOCoS+WgHTegDaAhHQKoMvzjm0Vt1fZQoaAZHQKAWglVLi/BoB03oA2gIR0CqDzcyWRigdX2UKGgGR0Cc8OLGJemfaAdN6ANoCEdAqhDXRNRFZ3V9lChoBkdAnNyhCx/us2gHTegDaAhHQKoUZ7/GVA11fZQoaAZHQJdsnt4RmK9oB03oA2gIR0CqGkxdIGyHdX2UKGgGR0CHBYm8/UvxaAdN6ANoCEdAqhzNRP420nV9lChoBkdAlEISH2ys0mgHTegDaAhHQKoeZzErGzd1fZQoaAZHQJTHpnzxwyZoB03oA2gIR0CqIfl0YCQtdX2UKGgGR0CGyADh99c9aAdN6ANoCEdAqifIIBzV+nV9lChoBkdAmKVNuUD+zmgHTegDaAhHQKoqNsMRYih1fZQoaAZHQJrNj8Nx2jhoB03oA2gIR0CqK83IdU83dX2UKGgGR0CawEI2OyVwaAdN6ANoCEdAqi9OEZiuuHV9lChoBkdAnjrvb0voNmgHTegDaAhHQKo1C3RXwLF1fZQoaAZHQKApbUVi4KBoB03oA2gIR0CqN36PbO/tdX2UKGgGR0CgHNVwYLssaAdN6ANoCEdAqjkY99tuUHV9lChoBkdAnwSnN1QqJGgHTegDaAhHQKo8mJOWSlp1fZQoaAZHQJ9j7FuNxVBoB03oA2gIR0CqQl/336AOdX2UKGgGR0CdOjzCUHIIaAdN6ANoCEdAqkTLM3ZPEnV9lChoBkdAnu/iSFGoaWgHTegDaAhHQKpGYxC6Ymd1fZQoaAZHQJ5ssIzFdcBoB03oA2gIR0CqSeOvECNkdX2UKGgGR0Cfn35eqrBCaAdN6ANoCEdAqk+kmBvrGHV9lChoBkdAmt4QqZtvXWgHTegDaAhHQKpSFRfnfVJ1fZQoaAZHQJ+EsN6PbPBoB03oA2gIR0CqU62912aEdX2UKGgGR0Cc6aHtF8XvaAdN6ANoCEdAqlc0MiKR+3V9lChoBkdAnhlmbLEDQ2gHTegDaAhHQKpc+ih37k51fZQoaAZHQJztOLjxTbZoB03oA2gIR0CqX2T4L1EmdX2UKGgGR0Cf9oMX7+DOaAdN6ANoCEdAqmD+VRk3CXV9lChoBkdAmrd2GM4tH2gHTegDaAhHQKpkg1uR9w51fZQoaAZHQJ8s7zErGzdoB03oA2gIR0CqakElNUOvdX2UKGgGR0Cf59aG5+YuaAdN6ANoCEdAqmyzd+G47XV9lChoBkdAoXF0Q9RrJ2gHTegDaAhHQKpuTj8UEgZ1fZQoaAZHQKGw0/WUbDNoB03oA2gIR0CqccvjOs1bdX2UKGgGR0Ch0wAr6LwXaAdN6ANoCEdAqneEu6ErXnV9lChoBkdAoLoc6FM7EGgHTegDaAhHQKp58e3hGYt1fZQoaAZHQKErqhlDneVoB03oA2gIR0Cqe4d+gDigdX2UKGgGR0ChYezRIBikaAdN6ANoCEdAqn8Ek0JnhHV9lChoBkdAoZgfAj6eoWgHTegDaAhHQKqExgKF7D51fZQoaAZHQKEgHATIvJ1oB03oA2gIR0Cqhz2Y4Qz2dX2UKGgGR0Cg6QJiAlOXaAdN6ANoCEdAqojYsXizcHV9lChoBkdAoKP45Lh73WgHTegDaAhHQKqMX/LDAJt1fZQoaAZHQKGsyHGCI1toB03oA2gIR0CqkhJnQID6dX2UKGgGR0CgV90M5OrRaAdN6ANoCEdAqpSBrWRRuXV9lChoBkdAojv+rn1WbWgHTegDaAhHQKqWH72tdRl1fZQoaAZHQKHTJ/4qPOpoB03oA2gIR0CqmZ+MIeHSdX2UKGgGR0CiD9uu7pV0aAdN6ANoCEdAqp9V1EE1VHV9lChoBkdAoT9yU7jkuGgHTegDaAhHQKqhzUGVzIV1fZQoaAZHQKHdmHKOktVoB03oA2gIR0Cqo2f/FR51dX2UKGgGR0CgXqoJZ4fPaAdN6ANoCEdAqqbyUs4DLnV9lChoBkdAiEZ/k/8l5WgHTegDaAhHQKqsuZ6Uqx11fZQoaAZHQKGhgZE2HcloB03oA2gIR0CqrynpbD/EdX2UKGgGR0CgZUxBeHBUaAdN6ANoCEdAqrDEj7hvSHV9lChoBkdAoPhQ6U7jk2gHTegDaAhHQKq0S1YQrc11fZQoaAZHQKBxvn1WbPRoB03oA2gIR0Cqug3yiEg4dX2UKGgGR0CexluwX668aAdN6ANoCEdAqrx9VWCEpXV9lChoBkdAoN1sEq2BrmgHTegDaAhHQKq+FlPrOZ91fZQoaAZHQKFTu7PppvhoB03oA2gIR0CqwaUzTF2ndX2UKGgGR0Cf/kJk5IYnaAdN6ANoCEdAqsdm1twaSHV9lChoBkdAoTDjkELYw2gHTegDaAhHQKrJ2ldC3PR1fZQoaAZHQKIdOltTDO1oB03oA2gIR0Cqy3cwxnFpdX2UKGgGR0ChphtQ0oBraAdN6ANoCEdAqs7/YQJ5V3V9lChoBkdAnOAhnvlU62gHTegDaAhHQKrUunPVurJ1fZQoaAZHQKIexE5yU9poB03oA2gIR0Cq1y3okiUxdX2UKGgGR0ChMZxF7UobaAdN6ANoCEdAqtjKgZjx1HV9lChoBkdAoCRUnCwbEWgHTegDaAhHQKrcaXBP9DR1fZQoaAZHQJZu3fWMCLdoB03oA2gIR0Cq4jvKuB+XdX2UKGgGR0CVLrrJKaodaAdN6ANoCEdAquSvwuuie3V9lChoBkdAlqxa8xsVL2gHTegDaAhHQKrmVbzK9wp1fZQoaAZHQKBQkIJqqOtoB03oA2gIR0Cq6esHSncddX2UKGgGR0CgtOjUd7v5aAdN6ANoCEdAqu/KRp1zQ3V9lChoBkdAlegae5Fw1mgHTegDaAhHQKryRJ/5Lyt1fZQoaAZHQJ+Jh8rqdH5oB03oA2gIR0Cq8+ZYxL00dX2UKGgGR0CduqrhzeXSaAdN6ANoCEdAqvejHsC1Z3V9lChoBkdAl73ySA6Mi2gHTegDaAhHQKr9fQSi/PB1fZQoaAZHQIrnh3JPqLVoB03oA2gIR0Cq//aMBIWhdX2UKGgGR0Cf/0r8iwB6aAdN6ANoCEdAqwGNvuPV/nV9lChoBkdAnfZGZeAuqWgHTegDaAhHQKsFH5jYqXp1fZQoaAZHQJRAGCrcTJ1oB03oA2gIR0CrCvEO7QLNdX2UKGgGR0CgVxsMAmzCaAdN6ANoCEdAqw1ssBhhIHV9lChoBkdAolLZmyxA0WgHTegDaAhHQKsPDcvduYR1fZQoaAZHQKHaw2itaINoB03oA2gIR0CrEt3V9Wp7dX2UKGgGR0ChS0+5OJtSaAdN6ANoCEdAqxj1EkSmInV9lChoBkdAm1+7cCYCyWgHTegDaAhHQKsbfo7FKkF1fZQoaAZHQJgetCb+cYtoB03oA2gIR0CrHStmL9/CdX2UKGgGR0CfpbhrFfiQaAdN6ANoCEdAqyDRBeHBUXV9lChoBkdAoM5pSrHU+mgHTegDaAhHQKsmsS3b2151fZQoaAZHQKAlG3UhFE1oB03oA2gIR0CrKShCdBjXdX2UKGgGR0CgjUCJwbVCaAdN6ANoCEdAqyrFKEnLJXV9lChoBkdAoXRWanaWX2gHTegDaAhHQKsuaGeMAFR1fZQoaAZHQKBYjd3Sro5oB03oA2gIR0CrNERvvSc9dX2UKGgGR0ChPh225QP7aAdN6ANoCEdAqzbG8h9srXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a87f493c256e6e0db4f79af3e677c38d232ca345826f5a50c9e074254366f3ee
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:088d3be1c52aea99ecb25d28965b0c7c590f5faa8d5878f6a50c6455f6adec86
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0cb3314160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0cb33141f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0cb3314280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0cb3314310>", "_build": "<function ActorCriticPolicy._build at 0x7f0cb33143a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0cb3314430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0cb33144c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0cb3314550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0cb33145e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0cb3314670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0cb3314700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0cb3314790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0cb3388e70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677351806312284308, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMinlj8Dz2G/R4MiPrNSWj+h4CO/lVI9vUMtjz7VwyO/FzlTP/Tz/7uLPjFAzJHJvnNxjL94uSY/kP9vv7P7jr6+7g+/1GdYvrwL8j38X2Q/cQpnvo4opT1oJWm/ZZ36PIpAeD/ZuNs+jR8eP6XUh79ytUo+s9mIPr3J8z7S1+U+mA9+vHK88zqjD4M+GAnOvpz1zT6pP5I+7Q5dP1+Ixj6xEQO/mwl9vxBCBr5Kzpy/5lILvpyPbb8866Q+YvWDP46bKr/BGZ083EGZvhqTEL+KQHg/2bjbPo0fHj+l1Ie/ZyknP6JqOj4dbvg+a7U2P+KAyr93ano/LKyNPrUKR7+afaa+7BG4vnqp8j+velo+NYQnv71lEMAZDoK+FiMIwEa6hL99UMm/WbchP/qpHL4piCq/jJeQPHR6M77tVM++ikB4P9m42z6NHx4/pdSHv5r0zr0TE1K+y7bsPj18BT/nMYu/SY8av2KAAj9oPGi+9nkeP4dnJL19WDA/yCbPvqvamL+gOEk/JAfdviG4fT5E+zm/NCjRPmb+FT+aWMa+7/6uvjcRCT+Vsue+AXGQP4pAeD/ZuNs+jR8eP6XUh7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAh9EC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhB9ZPQAAAACQU/C/AAAAADnZhb0AAAAAmsv4PwAAAABdaVi9AAAAAHCa7T8AAAAA8IRAvQAAAAAfNuG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOGvVNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCdvMjwAAAAAM5DvvwAAAADwCgA+AAAAAOep3j8AAAAAJT+1PAAAAAAC1eg/AAAAABDQDr4AAAAAUNvcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH2Ye7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDrcTE9AAAAAPCT9r8AAAAA68QFvgAAAADNRtw/AAAAAHjXuz0AAAAAj4zzPwAAAADBY469AAAAADJV/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiNwA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqgwHvQAAAADcy+C/AAAAAHoYwDwAAAAAdSzrPwAAAABJLBO7AAAAAAUr+T8AAAAAhnXmvAAAAACwnfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQzAohIOH6MAWyUTegDjAF0lEdAqehMfozN2XV9lChoBkdAnNyYVRDTjWgHTegDaAhHQKnr05cTrVx1fZQoaAZHQJ1ST4REnb9oB03oA2gIR0Cp8Y3+l0o0dX2UKGgGR0CXMt2ECeVcaAdN6ANoCEdAqfQDCSA6MnV9lChoBkdAmpvs+mm+CmgHTegDaAhHQKn1qxWT5ft1fZQoaAZHQJzyP18LKFJoB03oA2gIR0Cp+TsLORkmdX2UKGgGR0CNJME4ecQRaAdN6ANoCEdAqf8YmzByj3V9lChoBkdAnsqrBfrrxGgHTegDaAhHQKoBqxPfsNV1fZQoaAZHQJ1lNgZ0jkdoB03oA2gIR0CqA0rtVrAQdX2UKGgGR0CWQSgssg+yaAdN6ANoCEdAqgbnnGKhtnV9lChoBkdAn+lMOCoS+WgHTegDaAhHQKoMvzjm0Vt1fZQoaAZHQKAWglVLi/BoB03oA2gIR0CqDzcyWRigdX2UKGgGR0Cc8OLGJemfaAdN6ANoCEdAqhDXRNRFZ3V9lChoBkdAnNyhCx/us2gHTegDaAhHQKoUZ7/GVA11fZQoaAZHQJdsnt4RmK9oB03oA2gIR0CqGkxdIGyHdX2UKGgGR0CHBYm8/UvxaAdN6ANoCEdAqhzNRP420nV9lChoBkdAlEISH2ys0mgHTegDaAhHQKoeZzErGzd1fZQoaAZHQJTHpnzxwyZoB03oA2gIR0CqIfl0YCQtdX2UKGgGR0CGyADh99c9aAdN6ANoCEdAqifIIBzV+nV9lChoBkdAmKVNuUD+zmgHTegDaAhHQKoqNsMRYih1fZQoaAZHQJrNj8Nx2jhoB03oA2gIR0CqK83IdU83dX2UKGgGR0CawEI2OyVwaAdN6ANoCEdAqi9OEZiuuHV9lChoBkdAnjrvb0voNmgHTegDaAhHQKo1C3RXwLF1fZQoaAZHQKApbUVi4KBoB03oA2gIR0CqN36PbO/tdX2UKGgGR0CgHNVwYLssaAdN6ANoCEdAqjkY99tuUHV9lChoBkdAnwSnN1QqJGgHTegDaAhHQKo8mJOWSlp1fZQoaAZHQJ9j7FuNxVBoB03oA2gIR0CqQl/336AOdX2UKGgGR0CdOjzCUHIIaAdN6ANoCEdAqkTLM3ZPEnV9lChoBkdAnu/iSFGoaWgHTegDaAhHQKpGYxC6Ymd1fZQoaAZHQJ5ssIzFdcBoB03oA2gIR0CqSeOvECNkdX2UKGgGR0Cfn35eqrBCaAdN6ANoCEdAqk+kmBvrGHV9lChoBkdAmt4QqZtvXWgHTegDaAhHQKpSFRfnfVJ1fZQoaAZHQJ+EsN6PbPBoB03oA2gIR0CqU62912aEdX2UKGgGR0Cc6aHtF8XvaAdN6ANoCEdAqlc0MiKR+3V9lChoBkdAnhlmbLEDQ2gHTegDaAhHQKpc+ih37k51fZQoaAZHQJztOLjxTbZoB03oA2gIR0CqX2T4L1EmdX2UKGgGR0Cf9oMX7+DOaAdN6ANoCEdAqmD+VRk3CXV9lChoBkdAmrd2GM4tH2gHTegDaAhHQKpkg1uR9w51fZQoaAZHQJ8s7zErGzdoB03oA2gIR0CqakElNUOvdX2UKGgGR0Cf59aG5+YuaAdN6ANoCEdAqmyzd+G47XV9lChoBkdAoXF0Q9RrJ2gHTegDaAhHQKpuTj8UEgZ1fZQoaAZHQKGw0/WUbDNoB03oA2gIR0CqccvjOs1bdX2UKGgGR0Ch0wAr6LwXaAdN6ANoCEdAqneEu6ErXnV9lChoBkdAoLoc6FM7EGgHTegDaAhHQKp58e3hGYt1fZQoaAZHQKErqhlDneVoB03oA2gIR0Cqe4d+gDigdX2UKGgGR0ChYezRIBikaAdN6ANoCEdAqn8Ek0JnhHV9lChoBkdAoZgfAj6eoWgHTegDaAhHQKqExgKF7D51fZQoaAZHQKEgHATIvJ1oB03oA2gIR0Cqhz2Y4Qz2dX2UKGgGR0Cg6QJiAlOXaAdN6ANoCEdAqojYsXizcHV9lChoBkdAoKP45Lh73WgHTegDaAhHQKqMX/LDAJt1fZQoaAZHQKGsyHGCI1toB03oA2gIR0CqkhJnQID6dX2UKGgGR0CgV90M5OrRaAdN6ANoCEdAqpSBrWRRuXV9lChoBkdAojv+rn1WbWgHTegDaAhHQKqWH72tdRl1fZQoaAZHQKHTJ/4qPOpoB03oA2gIR0CqmZ+MIeHSdX2UKGgGR0CiD9uu7pV0aAdN6ANoCEdAqp9V1EE1VHV9lChoBkdAoT9yU7jkuGgHTegDaAhHQKqhzUGVzIV1fZQoaAZHQKHdmHKOktVoB03oA2gIR0Cqo2f/FR51dX2UKGgGR0CgXqoJZ4fPaAdN6ANoCEdAqqbyUs4DLnV9lChoBkdAiEZ/k/8l5WgHTegDaAhHQKqsuZ6Uqx11fZQoaAZHQKGhgZE2HcloB03oA2gIR0CqrynpbD/EdX2UKGgGR0CgZUxBeHBUaAdN6ANoCEdAqrDEj7hvSHV9lChoBkdAoPhQ6U7jk2gHTegDaAhHQKq0S1YQrc11fZQoaAZHQKBxvn1WbPRoB03oA2gIR0Cqug3yiEg4dX2UKGgGR0CexluwX668aAdN6ANoCEdAqrx9VWCEpXV9lChoBkdAoN1sEq2BrmgHTegDaAhHQKq+FlPrOZ91fZQoaAZHQKFTu7PppvhoB03oA2gIR0CqwaUzTF2ndX2UKGgGR0Cf/kJk5IYnaAdN6ANoCEdAqsdm1twaSHV9lChoBkdAoTDjkELYw2gHTegDaAhHQKrJ2ldC3PR1fZQoaAZHQKIdOltTDO1oB03oA2gIR0Cqy3cwxnFpdX2UKGgGR0ChphtQ0oBraAdN6ANoCEdAqs7/YQJ5V3V9lChoBkdAnOAhnvlU62gHTegDaAhHQKrUunPVurJ1fZQoaAZHQKIexE5yU9poB03oA2gIR0Cq1y3okiUxdX2UKGgGR0ChMZxF7UobaAdN6ANoCEdAqtjKgZjx1HV9lChoBkdAoCRUnCwbEWgHTegDaAhHQKrcaXBP9DR1fZQoaAZHQJZu3fWMCLdoB03oA2gIR0Cq4jvKuB+XdX2UKGgGR0CVLrrJKaodaAdN6ANoCEdAquSvwuuie3V9lChoBkdAlqxa8xsVL2gHTegDaAhHQKrmVbzK9wp1fZQoaAZHQKBQkIJqqOtoB03oA2gIR0Cq6esHSncddX2UKGgGR0CgtOjUd7v5aAdN6ANoCEdAqu/KRp1zQ3V9lChoBkdAlegae5Fw1mgHTegDaAhHQKryRJ/5Lyt1fZQoaAZHQJ+Jh8rqdH5oB03oA2gIR0Cq8+ZYxL00dX2UKGgGR0CduqrhzeXSaAdN6ANoCEdAqvejHsC1Z3V9lChoBkdAl73ySA6Mi2gHTegDaAhHQKr9fQSi/PB1fZQoaAZHQIrnh3JPqLVoB03oA2gIR0Cq//aMBIWhdX2UKGgGR0Cf/0r8iwB6aAdN6ANoCEdAqwGNvuPV/nV9lChoBkdAnfZGZeAuqWgHTegDaAhHQKsFH5jYqXp1fZQoaAZHQJRAGCrcTJ1oB03oA2gIR0CrCvEO7QLNdX2UKGgGR0CgVxsMAmzCaAdN6ANoCEdAqw1ssBhhIHV9lChoBkdAolLZmyxA0WgHTegDaAhHQKsPDcvduYR1fZQoaAZHQKHaw2itaINoB03oA2gIR0CrEt3V9Wp7dX2UKGgGR0ChS0+5OJtSaAdN6ANoCEdAqxj1EkSmInV9lChoBkdAm1+7cCYCyWgHTegDaAhHQKsbfo7FKkF1fZQoaAZHQJgetCb+cYtoB03oA2gIR0CrHStmL9/CdX2UKGgGR0CfpbhrFfiQaAdN6ANoCEdAqyDRBeHBUXV9lChoBkdAoM5pSrHU+mgHTegDaAhHQKsmsS3b2151fZQoaAZHQKAlG3UhFE1oB03oA2gIR0CrKShCdBjXdX2UKGgGR0CgjUCJwbVCaAdN6ANoCEdAqyrFKEnLJXV9lChoBkdAoXRWanaWX2gHTegDaAhHQKsuaGeMAFR1fZQoaAZHQKBYjd3Sro5oB03oA2gIR0CrNERvvSc9dX2UKGgGR0ChPh225QP7aAdN6ANoCEdAqzbG8h9srXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7704a668513f749cf7952bbc2ff591069c90a8522046466b3c9a3682d5563142
3
+ size 1146105
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2133.0615273128906, "std_reward": 286.2527207098041, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-25T20:02:57.029376"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:647ff426976091913437d25a24bede08061906e00086d64577d1df362619274d
3
+ size 2136