s23dr-hoho-competition / handcrafted_solution.py
Siromanec's picture
scale_estimation_coefficient=4.5, added hip, reordered operations to remove loops
76ee08d
raw
history blame
18.4 kB
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction
import io
from collections import defaultdict
from typing import Tuple, List
import cv2
import numpy as np
from PIL import Image as PImage
from hoho.color_mappings import gestalt_color_mapping
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
from scipy.spatial import KDTree
from scipy.spatial.distance import cdist
apex_color = gestalt_color_mapping["apex"]
eave_end_point = gestalt_color_mapping["eave_end_point"]
flashing_end_point = gestalt_color_mapping["flashing_end_point"]
apex_color, eave_end_point, flashing_end_point = [np.array(i) for i in [apex_color, eave_end_point, flashing_end_point]]
unclassified = np.array([(215, 62, 138)])
line_classes = ['eave', 'ridge', 'rake', 'valley']
def empty_solution():
'''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
return np.zeros((2, 3)), [(0, 1)]
def undesired_objects(image):
image = image.astype('uint8')
nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=4)
sizes = stats[:, -1]
max_label = 1
max_size = sizes[1]
for i in range(2, nb_components):
if sizes[i] > max_size:
max_label = i
max_size = sizes[i]
img2 = np.zeros(output.shape)
img2[output == max_label] = 1
return img2
def clean_image(image_gestalt) -> np.ndarray:
# clears image in from of unclassified and disconected components
image_gestalt = np.array(image_gestalt)
unclassified_mask = cv2.inRange(image_gestalt, unclassified + 0.0, unclassified + 0.8)
unclassified_mask = cv2.bitwise_not(unclassified_mask)
mask = undesired_objects(unclassified_mask).astype(np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, np.ones((11, 11), np.uint8), iterations=11)
mask = cv2.morphologyEx(mask, cv2.MORPH_DILATE, np.ones((11, 11), np.uint8), iterations=2)
image_gestalt[:, :, 0] *= mask
image_gestalt[:, :, 1] *= mask
image_gestalt[:, :, 2] *= mask
return image_gestalt
def get_vertices(image_gestalt, *, color_range=4., dialations=3, erosions=1, kernel_size=13):
### detects the apex and eave end and flashing end points
apex_mask = cv2.inRange(image_gestalt, apex_color - color_range, apex_color + color_range)
eave_end_point_mask = cv2.inRange(image_gestalt, eave_end_point - color_range, eave_end_point + color_range)
flashing_end_point_mask = cv2.inRange(image_gestalt, flashing_end_point - color_range,
flashing_end_point + color_range)
eave_end_point_mask = cv2.bitwise_or(eave_end_point_mask, flashing_end_point_mask)
kernel = np.ones((kernel_size, kernel_size), np.uint8)
apex_mask = cv2.morphologyEx(apex_mask, cv2.MORPH_DILATE, kernel, iterations=dialations)
apex_mask = cv2.morphologyEx(apex_mask, cv2.MORPH_ERODE, kernel, iterations=erosions)
eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask, cv2.MORPH_DILATE, kernel, iterations=dialations)
eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask, cv2.MORPH_ERODE, kernel, iterations=erosions)
*_, apex_centroids = cv2.connectedComponentsWithStats(apex_mask, connectivity=4, stats=cv2.CV_32S)
*_, other_centroids = cv2.connectedComponentsWithStats(eave_end_point_mask, connectivity=4, stats=cv2.CV_32S)
return apex_centroids[1:], other_centroids[1:], apex_mask, eave_end_point_mask
def infer_vertices(image_gestalt, *, color_range=4.):
ridge_color = np.array(gestalt_color_mapping["ridge"])
rake_color = np.array(gestalt_color_mapping["rake"])
ridge_mask = cv2.inRange(image_gestalt,
ridge_color - color_range,
ridge_color + color_range)
ridge_mask = cv2.morphologyEx(ridge_mask,
cv2.MORPH_DILATE, np.ones((3, 3)), iterations=4)
rake_mask = cv2.inRange(image_gestalt,
rake_color - color_range,
rake_color + color_range)
rake_mask = cv2.morphologyEx(rake_mask,
cv2.MORPH_DILATE, np.ones((3, 3)), iterations=4)
intersection_mask = cv2.bitwise_and(ridge_mask, rake_mask)
intersection_mask = cv2.morphologyEx(intersection_mask, cv2.MORPH_DILATE, np.ones((11, 11)), iterations=3)
*_, inferred_centroids = cv2.connectedComponentsWithStats(intersection_mask, connectivity=4, stats=cv2.CV_32S)
return inferred_centroids[1:], intersection_mask
def get_missed_vertices(vertices, inferred_centroids, *, min_missing_distance=200.0, **kwargs):
vertices = KDTree(vertices)
closest = vertices.query(inferred_centroids, k=1, distance_upper_bound=min_missing_distance)
missed_points = inferred_centroids[closest[1] == len(vertices.data)]
return missed_points
def convert_entry_to_human_readable(entry):
out = {}
already_good = {'__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces',
'face_semantics', 'K', 'R', 't'}
for k, v in entry.items():
if k in already_good:
out[k] = v
continue
match k:
case 'points3d':
out[k] = read_points3D_binary(fid=io.BytesIO(v))
case 'cameras':
out[k] = read_cameras_binary(fid=io.BytesIO(v))
case 'images':
out[k] = read_images_binary(fid=io.BytesIO(v))
case 'ade20k' | 'gestalt':
out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
case 'depthcm':
out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
return out
def get_vertices_and_edges_from_segmentation(gest_seg_np, *, color_range=4., point_radius=30, max_angle=5., extend=35,
**kwargs):
'''Get the vertices and edges from the gestalt segmentation mask of the house'''
# Apex
connections = []
deviation_threshold = np.cos(np.deg2rad(max_angle))
apex_centroids, eave_end_point_centroids, apex_mask, eave_end_point_mask = get_vertices(gest_seg_np)
vertices = np.concatenate([apex_centroids, eave_end_point_centroids])
# inferred_vertices, inferred_mask = infer_vertices(gest_seg_np)
# missed_vertices = get_missed_vertices(vertices, inferred_vertices, **kwargs)
# vertices = np.concatenate([vertices, missed_vertices])
vertices = KDTree(vertices)
# scale = 1
# vertex_size = np.zeros(vertices.shape[0])
# for i, coords in enumerate(vertices):
# # coords = np.round(coords).astype(np.uint32)
# radius = point_radius # np.clip(int(max_depth//2 + depth_np[coords[1], coords[0]]), 10, 30)#int(np.clip(max_depth - depth_np[coords[1], coords[0]], 10, 20))
# vertex_size[i] = (scale * radius) ** 2 # because we are using squared distances
if len(vertices.data) < 2:
return [], []
edges = []
line_directions = []
rho = 1 # distance resolution in pixels of the Hough grid
theta = np.pi / 180 # angular resolution in radians of the Hough grid
threshold = 20 # minimum number of votes (intersections in Hough grid cell)
min_line_length = 60 # minimum number of pixels making up a line
max_line_gap = 40 # maximum gap in pixels between connectable line segments
for edge_class in ['eave', 'ridge', 'rake', 'valley', 'flashing', 'step_flashing', 'hip']:
edge_color = np.array(gestalt_color_mapping[edge_class])
mask = cv2.inRange(gest_seg_np,
edge_color - color_range,
edge_color + color_range)
mask = cv2.morphologyEx(mask,
cv2.MORPH_DILATE, np.ones((3, 3)), iterations=1)
if not np.any(mask):
continue
# Run Hough on edge detected image
# Output "lines" is an array containing endpoints of detected line segments
cv2.GaussianBlur(mask, (11, 11), 0, mask)
lines = cv2.HoughLinesP(mask, rho, theta, threshold, np.array([]),
min_line_length, max_line_gap)
if lines is None:
continue
for line_idx, line in enumerate(lines):
for x1, y1, x2, y2 in line:
if x1 < x2:
x1, y1, x2, y2 = x2, y2, x1, y1
direction = (np.array([x2 - x1, y2 - y1]))
direction = direction / np.linalg.norm(direction)
line_directions.append(direction)
direction = extend * direction
x1, y1 = (-direction + (x1, y1)).astype(np.int32)
x2, y2 = (+ direction + (x2, y2)).astype(np.int32)
edges.append((x1, y1, x2, y2))
edges = np.array(edges).astype(np.float64)
line_directions = np.array(line_directions).astype(np.float64)
if len(edges) < 1:
return [], []
# calculate the distances between the vertices and the edge ends
begin_edges = KDTree(edges[:, :2])
end_edges = KDTree(edges[:, 2:])
begin_indices = begin_edges.query_ball_tree(vertices, point_radius)
end_indices = end_edges.query_ball_tree(vertices, point_radius)
line_indices = np.where(np.array([len(i) and len(j) for i, j in zip(begin_indices, end_indices)]))[0]
# create all possible connections between begin and end candidates that correspond to a line
begin_vertex_list = []
end_vertex_list = []
line_idx_list = []
for line_idx in line_indices:
begin_vertex, end_vertex = begin_indices[line_idx], end_indices[line_idx]
begin_vertex, end_vertex = np.meshgrid(begin_vertex, end_vertex)
begin_vertex_list.extend(begin_vertex.flatten())
end_vertex_list.extend(end_vertex.flatten())
line_idx_list.extend([line_idx] * len(begin_vertex.flatten()))
line_idx_list = np.array(line_idx_list)
all_connections = np.array([begin_vertex_list, end_vertex_list])
# decrease the number of possible connections to reduce number of calculations
possible_connections = np.unique(all_connections, axis=1)
possible_connections = np.sort(possible_connections, axis=0)
possible_connections = np.unique(possible_connections, axis=1)
possible_connections = possible_connections[:, possible_connections[0, :] != possible_connections[1, :]]
if possible_connections.shape[1] < 1:
return [], []
# precalculate the possible direction vectors
possible_direction_vectors = vertices.data[possible_connections[0]] - vertices.data[possible_connections[1]]
possible_direction_vectors = possible_direction_vectors / np.linalg.norm(possible_direction_vectors, axis=1)[:,
np.newaxis]
owned_lines_per_possible_connections = [list() for i in range(possible_connections.shape[1])]
# assign lines to possible connections
for line_idx, i, j in zip(line_idx_list, begin_vertex_list, end_vertex_list):
if i == j:
continue
i, j = min(i, j), max(i, j)
for connection_idx, connection in enumerate(possible_connections.T):
if np.all((i, j) == connection):
owned_lines_per_possible_connections[connection_idx].append(line_idx)
break
# check if the lines are in the same direction as the possible connection
for fitted_line_idx, owned_lines_per_possible_connection in enumerate(owned_lines_per_possible_connections):
line_deviations = np.abs(
np.dot(line_directions[owned_lines_per_possible_connection], possible_direction_vectors[fitted_line_idx]))
if np.any(line_deviations > deviation_threshold):
connections.append(possible_connections[:, fitted_line_idx])
vertices = [{"xy": v, "type": "apex"} for v in apex_centroids]
# vertices += [{"xy": v, "type": "apex"} for v in missed_vertices]
vertices += [{"xy": v, "type": "eave_end_point"} for v in eave_end_point_centroids]
return vertices, connections
def get_uv_depth(vertices, depth):
'''Get the depth of the vertices from the depth image'''
uv = np.array([v['xy'] for v in vertices])
uv_int = uv.astype(np.int32)
H, W = depth.shape[:2]
uv_int[:, 0] = np.clip(uv_int[:, 0], 0, W - 1)
uv_int[:, 1] = np.clip(uv_int[:, 1], 0, H - 1)
vertex_depth = depth[(uv_int[:, 1], uv_int[:, 0])]
return uv, vertex_depth
def merge_vertices_3d(vert_edge_per_image, merge_th=0.1, **kwargs):
'''Merge vertices that are close to each other in 3D space and are of same types'''
all_3d_vertices = []
connections_3d = []
all_indexes = []
cur_start = 0
types = []
for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
types += [int(v['type'] == 'apex') for v in vertices]
all_3d_vertices.append(vertices_3d)
connections_3d += [(x + cur_start, y + cur_start) for (x, y) in connections]
cur_start += len(vertices_3d)
all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
# print (connections_3d)
distmat = cdist(all_3d_vertices, all_3d_vertices)
types = np.array(types).reshape(-1, 1)
same_types = cdist(types, types)
mask_to_merge = (distmat <= merge_th) & (same_types == 0)
new_vertices = []
new_connections = []
to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
to_merge_final = defaultdict(list)
for i in range(len(all_3d_vertices)):
for j in to_merge:
if i in j:
to_merge_final[i] += j
for k, v in to_merge_final.items():
to_merge_final[k] = list(set(v))
already_there = set()
merged = []
for k, v in to_merge_final.items():
if k in already_there:
continue
merged.append(v)
for vv in v:
already_there.add(vv)
old_idx_to_new = {}
count = 0
for idxs in merged:
new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
for idx in idxs:
old_idx_to_new[idx] = count
count += 1
# print (connections_3d)
new_vertices = np.array(new_vertices)
# print (connections_3d)
for conn in connections_3d:
new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
if new_con[0] == new_con[1]:
continue
if new_con not in new_connections:
new_connections.append(new_con)
# print (f'{len(new_vertices)} left after merging {len(all_3d_vertices)} with {th=}')
return new_vertices, new_connections
def prune_not_connected(all_3d_vertices, connections_3d):
'''Prune vertices that are not connected to any other vertex'''
connected = defaultdict(list)
for c in connections_3d:
connected[c[0]].append(c)
connected[c[1]].append(c)
new_indexes = {}
new_verts = []
connected_out = []
for k, v in connected.items():
vert = all_3d_vertices[k]
if tuple(vert) not in new_verts:
new_verts.append(tuple(vert))
new_indexes[k] = len(new_verts) - 1
for k, v in connected.items():
for vv in v:
connected_out.append((new_indexes[vv[0]], new_indexes[vv[1]]))
connected_out = list(set(connected_out))
return np.array(new_verts), connected_out
def predict(entry, visualize=False, scale_estimation_coefficient=2.5, **kwargs) -> Tuple[np.ndarray, List[int]]:
good_entry = convert_entry_to_human_readable(entry)
if 'gestalt' not in good_entry or 'depthcm' not in good_entry or 'K' not in good_entry or 'R' not in good_entry or 't' not in good_entry:
print('Missing required fields in the entry')
return (good_entry['__key__'], *empty_solution())
vert_edge_per_image = {}
for i, (gest, depth, K, R, t) in enumerate(zip(good_entry['gestalt'],
good_entry['depthcm'],
good_entry['K'],
good_entry['R'],
good_entry['t']
)):
gest_seg = gest.resize(depth.size)
gest_seg_np = np.array(gest_seg).astype(np.uint8)
# Metric3D
depth_np = np.array(depth) / scale_estimation_coefficient
vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, **kwargs)
if (len(vertices) < 2) or (len(connections) < 1):
print(f'Not enough vertices or connections in image {i}')
vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
continue
uv, depth_vert = get_uv_depth(vertices, depth_np)
# Normalize the uv to the camera intrinsics
xy_local = np.ones((len(uv), 3))
xy_local[:, 0] = (uv[:, 0] - K[0, 2]) / K[0, 0]
xy_local[:, 1] = (uv[:, 1] - K[1, 2]) / K[1, 1]
# Get the 3D vertices
vertices_3d_local = depth_vert[..., None] * (xy_local / np.linalg.norm(xy_local, axis=1)[..., None])
world_to_cam = np.eye(4)
world_to_cam[:3, :3] = R
world_to_cam[:3, 3] = t.reshape(-1)
cam_to_world = np.linalg.inv(world_to_cam)
vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
vert_edge_per_image[i] = vertices, connections, vertices_3d
all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, **kwargs)
all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d)
if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
print(f'Not enough vertices or connections in the 3D vertices')
return (good_entry['__key__'], *empty_solution())
if visualize:
from hoho.viz3d import plot_estimate_and_gt
plot_estimate_and_gt(all_3d_vertices_clean,
connections_3d_clean,
good_entry['wf_vertices'],
good_entry['wf_edges'])
return good_entry['__key__'], all_3d_vertices_clean, connections_3d_clean