pointcloud_depth_coeff=1.05
Browse files- handcrafted_solution.py +2 -2
- script.py +1 -0
handcrafted_solution.py
CHANGED
@@ -454,7 +454,7 @@ def prune_not_connected(all_3d_vertices, connections_3d):
|
|
454 |
return np.array(new_verts), connected_out
|
455 |
|
456 |
|
457 |
-
def predict(entry, visualize=False, scale_estimation_coefficient=2.5, clustering_eps=100, dist_coeff=0, **kwargs) -> Tuple[
|
458 |
np.ndarray, List[int]]:
|
459 |
if 'gestalt' not in entry or 'depthcm' not in entry or 'K' not in entry or 'R' not in entry or 't' not in entry:
|
460 |
print('Missing required fields in the entry')
|
@@ -525,7 +525,7 @@ def predict(entry, visualize=False, scale_estimation_coefficient=2.5, clustering
|
|
525 |
homo_belonging_points = cv2.convertPointsToHomogeneous(np.array([i.xyz for i in belonging_points]))
|
526 |
depth = cv2.convertPointsFromHomogeneous(cv2.transform(homo_belonging_points, world_to_cam))
|
527 |
depth = depth[:, 0, 2]
|
528 |
-
depth = depth[important[0]]
|
529 |
projected2d = projected2d[important]
|
530 |
if len(depth) < 1:
|
531 |
print(f'No 3D points in image {i}')
|
|
|
454 |
return np.array(new_verts), connected_out
|
455 |
|
456 |
|
457 |
+
def predict(entry, visualize=False, scale_estimation_coefficient=2.5, clustering_eps=100, dist_coeff=0, pointcloud_depth_coeff = 1, **kwargs) -> Tuple[
|
458 |
np.ndarray, List[int]]:
|
459 |
if 'gestalt' not in entry or 'depthcm' not in entry or 'K' not in entry or 'R' not in entry or 't' not in entry:
|
460 |
print('Missing required fields in the entry')
|
|
|
525 |
homo_belonging_points = cv2.convertPointsToHomogeneous(np.array([i.xyz for i in belonging_points]))
|
526 |
depth = cv2.convertPointsFromHomogeneous(cv2.transform(homo_belonging_points, world_to_cam))
|
527 |
depth = depth[:, 0, 2]
|
528 |
+
depth = depth[important[0]] * pointcloud_depth_coeff
|
529 |
projected2d = projected2d[important]
|
530 |
if len(depth) < 1:
|
531 |
print(f'No 3D points in image {i}')
|
script.py
CHANGED
@@ -139,6 +139,7 @@ if __name__ == "__main__":
|
|
139 |
scale_estimation_coefficient=2.54,
|
140 |
clustering_eps=100,
|
141 |
dist_coeff=0.1,
|
|
|
142 |
))
|
143 |
|
144 |
for i, result in enumerate(tqdm(results)):
|
|
|
139 |
scale_estimation_coefficient=2.54,
|
140 |
clustering_eps=100,
|
141 |
dist_coeff=0.1,
|
142 |
+
pointcloud_depth_coeff=1.05,
|
143 |
))
|
144 |
|
145 |
for i, result in enumerate(tqdm(results)):
|