Siyong commited on
Commit
a039c57
1 Parent(s): 64de268

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: MilladRN
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # MilladRN
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 3.4355
18
+ - Wer: 0.4907
19
+ - Cer: 0.2802
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0001
39
+ - train_batch_size: 8
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: linear
44
+ - lr_scheduler_warmup_steps: 4000
45
+ - num_epochs: 750
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
51
+ |:-------------:|:------:|:-----:|:---------------:|:------:|:------:|
52
+ | 3.3347 | 33.9 | 2000 | 2.2561 | 0.9888 | 0.6087 |
53
+ | 1.3337 | 67.8 | 4000 | 1.8137 | 0.6877 | 0.3407 |
54
+ | 0.6504 | 101.69 | 6000 | 2.0718 | 0.6245 | 0.3229 |
55
+ | 0.404 | 135.59 | 8000 | 2.2246 | 0.6004 | 0.3221 |
56
+ | 0.2877 | 169.49 | 10000 | 2.2624 | 0.5836 | 0.3107 |
57
+ | 0.2149 | 203.39 | 12000 | 2.3788 | 0.5279 | 0.2802 |
58
+ | 0.1693 | 237.29 | 14000 | 1.8928 | 0.5502 | 0.2937 |
59
+ | 0.1383 | 271.19 | 16000 | 2.7520 | 0.5725 | 0.3103 |
60
+ | 0.1169 | 305.08 | 18000 | 2.2552 | 0.5446 | 0.2968 |
61
+ | 0.1011 | 338.98 | 20000 | 2.6794 | 0.5725 | 0.3119 |
62
+ | 0.0996 | 372.88 | 22000 | 2.4704 | 0.5595 | 0.3142 |
63
+ | 0.0665 | 406.78 | 24000 | 2.9073 | 0.5836 | 0.3194 |
64
+ | 0.0538 | 440.68 | 26000 | 3.1357 | 0.5632 | 0.3213 |
65
+ | 0.0538 | 474.58 | 28000 | 2.5639 | 0.5613 | 0.3091 |
66
+ | 0.0493 | 508.47 | 30000 | 3.3801 | 0.5613 | 0.3119 |
67
+ | 0.0451 | 542.37 | 32000 | 3.5469 | 0.5428 | 0.3158 |
68
+ | 0.0307 | 576.27 | 34000 | 4.2243 | 0.5390 | 0.3126 |
69
+ | 0.0301 | 610.17 | 36000 | 3.6666 | 0.5297 | 0.2929 |
70
+ | 0.0269 | 644.07 | 38000 | 3.2164 | 0.5 | 0.2838 |
71
+ | 0.0182 | 677.97 | 40000 | 3.0557 | 0.4963 | 0.2779 |
72
+ | 0.0191 | 711.86 | 42000 | 3.5190 | 0.5130 | 0.2921 |
73
+ | 0.0133 | 745.76 | 44000 | 3.4355 | 0.4907 | 0.2802 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.17.0
79
+ - Pytorch 1.12.0+cu113
80
+ - Datasets 1.18.3
81
+ - Tokenizers 0.12.1