update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: MilladRN
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# MilladRN
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 3.4355
|
18 |
+
- Wer: 0.4907
|
19 |
+
- Cer: 0.2802
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0001
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- lr_scheduler_warmup_steps: 4000
|
45 |
+
- num_epochs: 750
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
51 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|:------:|
|
52 |
+
| 3.3347 | 33.9 | 2000 | 2.2561 | 0.9888 | 0.6087 |
|
53 |
+
| 1.3337 | 67.8 | 4000 | 1.8137 | 0.6877 | 0.3407 |
|
54 |
+
| 0.6504 | 101.69 | 6000 | 2.0718 | 0.6245 | 0.3229 |
|
55 |
+
| 0.404 | 135.59 | 8000 | 2.2246 | 0.6004 | 0.3221 |
|
56 |
+
| 0.2877 | 169.49 | 10000 | 2.2624 | 0.5836 | 0.3107 |
|
57 |
+
| 0.2149 | 203.39 | 12000 | 2.3788 | 0.5279 | 0.2802 |
|
58 |
+
| 0.1693 | 237.29 | 14000 | 1.8928 | 0.5502 | 0.2937 |
|
59 |
+
| 0.1383 | 271.19 | 16000 | 2.7520 | 0.5725 | 0.3103 |
|
60 |
+
| 0.1169 | 305.08 | 18000 | 2.2552 | 0.5446 | 0.2968 |
|
61 |
+
| 0.1011 | 338.98 | 20000 | 2.6794 | 0.5725 | 0.3119 |
|
62 |
+
| 0.0996 | 372.88 | 22000 | 2.4704 | 0.5595 | 0.3142 |
|
63 |
+
| 0.0665 | 406.78 | 24000 | 2.9073 | 0.5836 | 0.3194 |
|
64 |
+
| 0.0538 | 440.68 | 26000 | 3.1357 | 0.5632 | 0.3213 |
|
65 |
+
| 0.0538 | 474.58 | 28000 | 2.5639 | 0.5613 | 0.3091 |
|
66 |
+
| 0.0493 | 508.47 | 30000 | 3.3801 | 0.5613 | 0.3119 |
|
67 |
+
| 0.0451 | 542.37 | 32000 | 3.5469 | 0.5428 | 0.3158 |
|
68 |
+
| 0.0307 | 576.27 | 34000 | 4.2243 | 0.5390 | 0.3126 |
|
69 |
+
| 0.0301 | 610.17 | 36000 | 3.6666 | 0.5297 | 0.2929 |
|
70 |
+
| 0.0269 | 644.07 | 38000 | 3.2164 | 0.5 | 0.2838 |
|
71 |
+
| 0.0182 | 677.97 | 40000 | 3.0557 | 0.4963 | 0.2779 |
|
72 |
+
| 0.0191 | 711.86 | 42000 | 3.5190 | 0.5130 | 0.2921 |
|
73 |
+
| 0.0133 | 745.76 | 44000 | 3.4355 | 0.4907 | 0.2802 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.17.0
|
79 |
+
- Pytorch 1.12.0+cu113
|
80 |
+
- Datasets 1.18.3
|
81 |
+
- Tokenizers 0.12.1
|