Upload folder using huggingface_hub
Browse files- README.md +63 -0
- model.joblib +3 -0
- target_encoders.joblib +3 -0
- training_params.json +1 -0
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
tags:
|
4 |
+
- autotrain
|
5 |
+
- tabular
|
6 |
+
- classification
|
7 |
+
- tabular-classification
|
8 |
+
datasets:
|
9 |
+
- dark-gbf-xgboost2/autotrain-data
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Trained Using AutoTrain
|
13 |
+
|
14 |
+
- Problem type: Tabular classification
|
15 |
+
|
16 |
+
## Validation Metrics
|
17 |
+
|
18 |
+
- logloss: 0.08323427141158712
|
19 |
+
- accuracy: 0.98
|
20 |
+
- mlogloss: 0.08323427141158712
|
21 |
+
- f1_macro: 0.8266666666666665
|
22 |
+
- f1_micro: 0.98
|
23 |
+
- f1_weighted: 0.9793333333333333
|
24 |
+
- precision_macro: 0.8666666666666666
|
25 |
+
- precision_micro: 0.98
|
26 |
+
- precision_weighted: 0.9833333333333333
|
27 |
+
- recall_macro: 0.8333333333333333
|
28 |
+
- recall_micro: 0.98
|
29 |
+
- recall_weighted: 0.98
|
30 |
+
- loss: 0.08323427141158712
|
31 |
+
|
32 |
+
## Best Params
|
33 |
+
|
34 |
+
- learning_rate: 0.16433034910560887
|
35 |
+
- reg_lambda: 3.7914578973926436
|
36 |
+
- reg_alpha: 2.806649620056883e-07
|
37 |
+
- subsample: 0.7396301555452317
|
38 |
+
- colsample_bytree: 0.9137471530067593
|
39 |
+
- max_depth: 6
|
40 |
+
- early_stopping_rounds: 383
|
41 |
+
- n_estimators: 15000
|
42 |
+
- eval_metric: mlogloss
|
43 |
+
|
44 |
+
## Usage
|
45 |
+
|
46 |
+
```python
|
47 |
+
import json
|
48 |
+
import joblib
|
49 |
+
import pandas as pd
|
50 |
+
|
51 |
+
model = joblib.load('model.joblib')
|
52 |
+
config = json.load(open('config.json'))
|
53 |
+
|
54 |
+
features = config['features']
|
55 |
+
|
56 |
+
# data = pd.read_csv("data.csv")
|
57 |
+
data = data[features]
|
58 |
+
|
59 |
+
predictions = model.predict(data) # or model.predict_proba(data)
|
60 |
+
|
61 |
+
# predictions can be converted to original labels using label_encoders.pkl
|
62 |
+
|
63 |
+
```
|
model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3aca3c209cf2095a513ce6d6dfd09f3ea02a2340fd80fecb20f16320e5f7c557
|
3 |
+
size 2478558
|
target_encoders.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f9978cbbc1d743470eb07503a8f34d7f44732df9fed6c14972362621d83f584
|
3 |
+
size 400
|
training_params.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"data_path": "dark-gbf-xgboost2/autotrain-data", "model": "xgboost", "username": "Skreeauk", "seed": 742, "train_split": "train", "valid_split": "validation", "project_name": "dark-gbf-xgboost2", "push_to_hub": true, "id_column": "autotrain_id", "target_columns": ["autotrain_label"], "categorical_columns": null, "numerical_columns": null, "task": "classification", "num_trials": 100, "time_limit": 3600, "categorical_imputer": "most_frequent", "numerical_imputer": "median", "numeric_scaler": "robust"}
|