File size: 2,906 Bytes
e71069a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: mit
datasets:
- SkyWater21/lv_emotions
language:
- lv
base_model:
- google-bert/bert-base-multilingual-cased
---
Fine-tuned [Multilingual BERT](https://huggingface.co/google-bert/bert-base-multilingual-cased) for multi-label emotion classification task.

Model was trained on [lv_emotions](https://huggingface.co/datasets/SkyWater21/lv_emotions) dataset. This dataset is Latvian translation of [GoEmotions](https://huggingface.co/datasets/go_emotions) and [Twitter Emotions](https://huggingface.co/datasets/SkyWater21/lv_twitter_emotions) dataset. Google Translate was used to generate the machine translation.

Original 26 emotions were mapped to 6 base emotions as per Dr. Ekman theory.

Labels predicted by classifier:
```yaml
0: anger
1: disgust
2: fear
3: joy
4: sadness
5: surprise
6: neutral
```

Seed used for random number generator is 42:
```python
def set_seed(seed=42):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
```

Training parameters:
```yaml
max_length: null
batch_size: 32
shuffle: True
num_workers: 4
pin_memory: False
drop_last: False
optimizer: adam
lr: 0.00001
weight_decay: 0
problem_type: multi_label_classification
num_epochs: 4
```


Evaluation results on test split of [lv_go_emotions](https://huggingface.co/datasets/SkyWater21/lv_emotions/viewer/combined/lv_go_emotions_test)
|              |Precision|Recall|F1-Score|Support|
|--------------|---------|------|--------|-------|
|anger         |     0.50|  0.35|    0.41|    726|
|disgust       |     0.44|  0.28|    0.35|    123|
|fear          |     0.58|  0.47|    0.52|     98|
|joy           |     0.80|  0.76|    0.78|   2104|
|sadness       |     0.66|  0.41|    0.51|    379|
|surprise      |     0.59|  0.55|    0.57|    677|
|neutral       |     0.71|  0.43|    0.54|   1787|
|micro avg     |     0.70|  0.55|    0.62|   5894|
|macro avg     |     0.61|  0.46|    0.52|   5894|
|weighted avg  |     0.69|  0.55|    0.61|   5894|
|samples avg   |     0.58|  0.56|    0.57|   5894|

Evaluation results on test split of [lv_twitter_emotions](https://huggingface.co/datasets/SkyWater21/lv_emotions/viewer/combined/lv_twitter_emotions_test)
|              |Precision|Recall|F1-Score|Support|
|--------------|---------|------|--------|-------|
|anger         |     0.92|  0.88|    0.90|  12013|
|disgust       |     0.90|  0.94|    0.92|  14117|
|fear          |     0.82|  0.67|    0.74|   3342|
|joy           |     0.88|  0.84|    0.86|   5913|
|sadness       |     0.86|  0.75|    0.80|   4786|
|surprise      |     0.94|  0.56|    0.70|   1510|
|neutral       |     0.00|  0.00|    0.00|      0|
|micro avg     |     0.90|  0.85|    0.87|  41681|
|macro avg     |     0.76|  0.66|    0.70|  41681|
|weighted avg  |     0.90|  0.85|    0.87|  41681|
|samples avg   |     0.85|  0.85|    0.85|  41681|