czuk commited on
Commit
212d0dd
1 Parent(s): 7711778

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -51
README.md CHANGED
@@ -1,51 +1,67 @@
1
- ---
2
- language:
3
- - multilingual
4
- - pl
5
- - ru
6
- - uk
7
- - bg
8
- - cs
9
- - sl
10
- datasets:
11
- - SlavicNER
12
- license: apache-2.0
13
- library_name: transformers
14
- pipeline_tag: text2text-generation
15
- tags:
16
- - entity linking
17
- widget:
18
- - text: "pl:Polsce"
19
- - text: "cs:Velké Británii"
20
- - text: "bg:българите"
21
- - text: "ru:Великобританию"
22
- - text: "sl:evropske komisije"
23
- - text: "uk:Європейського агентства лікарських засобів"
24
- ---
25
-
26
- # Model description
27
-
28
- This is a baseline model for named entity **lemmatization** trained on the single-out topic split of the
29
- [SlavicNER corpus](https://github.com/SlavicNLP/SlavicNER).
30
-
31
-
32
- # Usage
33
-
34
- You can use this model directly with a pipeline for text2text generation:
35
-
36
- ```python
37
- from transformers import pipeline
38
-
39
- model_name = "SlavicNLP/slavicner-linking-cross-topic-large"
40
- pipe = pipeline("text2text-generation", model_name)
41
-
42
- texts = ["pl:Polsce", "cs:Velké Británii", "bg:българите", "ru:Великобританию",
43
- "sl:evropske komisije", "uk:Європейського агентства лікарських засобів"]
44
-
45
- outputs = pipe(texts)
46
-
47
- ids = [o['generated_text'] for o in outputs]
48
- print(ids)
49
- # ['GPE-Poland', 'GPE-Great-Britain', 'GPE-Bulgaria', 'GPE-Great-Britain',
50
- # 'ORG-European-Commission', 'ORG-EMA-European-Medicines-Agency']
51
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - pl
5
+ - ru
6
+ - uk
7
+ - bg
8
+ - cs
9
+ - sl
10
+ datasets:
11
+ - SlavicNER
12
+ license: apache-2.0
13
+ library_name: transformers
14
+ pipeline_tag: text2text-generation
15
+ tags:
16
+ - entity linking
17
+ widget:
18
+ - text: "pl:Polsce"
19
+ - text: "cs:Velké Británii"
20
+ - text: "bg:българите"
21
+ - text: "ru:Великобританию"
22
+ - text: "sl:evropske komisije"
23
+ - text: "uk:Європейського агентства лікарських засобів"
24
+ ---
25
+
26
+ # Model description
27
+
28
+ This is a baseline model for named entity **lemmatization** trained on the single-out topic split of the
29
+ [SlavicNER corpus](https://github.com/SlavicNLP/SlavicNER).
30
+
31
+
32
+ # Resources and Technical Documentation
33
+
34
+ - Paper: [Cross-lingual Named Entity Corpus for Slavic Languages](https://arxiv.org/pdf/2404.00482), to appear in LREC-COLING 2024.
35
+ - Annotation guidelines: https://arxiv.org/pdf/2404.00482
36
+ - SlavicNER Corpus: https://github.com/SlavicNLP/SlavicNER
37
+
38
+
39
+ # Evaluation
40
+
41
+ *Will appear soon*
42
+
43
+
44
+ # Usage
45
+
46
+ You can use this model directly with a pipeline for text2text generation:
47
+
48
+ ```python
49
+ from transformers import pipeline
50
+
51
+ model_name = "SlavicNLP/slavicner-linking-cross-topic-large"
52
+ pipe = pipeline("text2text-generation", model_name)
53
+
54
+ texts = ["pl:Polsce", "cs:Velké Británii", "bg:българите", "ru:Великобританию",
55
+ "sl:evropske komisije", "uk:Європейського агентства лікарських засобів"]
56
+
57
+ outputs = pipe(texts)
58
+
59
+ ids = [o['generated_text'] for o in outputs]
60
+ print(ids)
61
+ # ['GPE-Poland', 'GPE-Great-Britain', 'GPE-Bulgaria', 'GPE-Great-Britain',
62
+ # 'ORG-European-Commission', 'ORG-EMA-European-Medicines-Agency']
63
+ ```
64
+
65
+ # Citation
66
+
67
+ *Will appear soon*