Update README.md
Browse files
README.md
CHANGED
@@ -22,9 +22,9 @@ tags:
|
|
22 |
<a href="https://discord.gg/P2yYH95N" target="_blank" style="margin: 2px;">
|
23 |
<img alt="Discord" src="https://img.shields.io/badge/Discord-Small%20Doges-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
24 |
</a>
|
25 |
-
<a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;">
|
26 |
<img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/>
|
27 |
-
</a>
|
28 |
<a href="https://github.com/SmallDoges/small-doge" target="_blank" style="margin: 2px;">
|
29 |
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/>
|
30 |
</a>
|
@@ -33,7 +33,7 @@ tags:
|
|
33 |
</a>
|
34 |
</div>
|
35 |
|
36 |
-
Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture,
|
37 |
|
38 |
|
39 |
## Uses
|
@@ -52,28 +52,28 @@ Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-La
|
|
52 |
|
53 |
## Model Details
|
54 |
|
55 |
-
We build the Doge by doing Per-Training on [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus).
|
56 |
-
|
57 |
-
> NOTE: If you want to continue pre-training this model, you can find the unconverged checkpoint [here](https://huggingface.co/SmallDoge/Doge-60M-checkpoint).
|
58 |
-
|
59 |
-
> NOTE: These models has not been fine-tuned for instruction, the instruction model is [here](https://huggingface.co/SmallDoge/Doge-60M-Instruct).
|
60 |
|
61 |
-
> TODO: The larger model is under training and will be uploaded soon.
|
62 |
|
63 |
**Pre-Training**:
|
64 |
|
65 |
-
| Model | Training Data | Steps | Content Length | Tokens | LR | Batch Size | Precision |
|
66 |
-
|
67 |
-
| [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 8k | 2048 | 4B | 8e-3 | 0.5M | bfloat16 |
|
68 |
-
| [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 16k | 2048 | 16B | 6e-3 | 1M | bfloat16 |
|
|
|
|
|
69 |
|
70 |
**Evaluation**:
|
71 |
|
72 |
-
| Model | MMLU | TriviaQA | ARC
|
73 |
-
|
74 |
-
| [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | 25.
|
75 |
-
| [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | 26.
|
|
|
|
|
76 |
|
|
|
77 |
> All evaluations are done using five-shot settings, without additional training on the benchmarks.
|
78 |
|
79 |
**Procedure**:
|
@@ -91,13 +91,10 @@ We build the Doge by doing Per-Training on [Smollm-Corpus](https://huggingface.c
|
|
91 |
## Citation
|
92 |
|
93 |
```bibtex
|
94 |
-
@misc{
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
archivePrefix={arXiv},
|
100 |
-
primaryClass={cs.LG},
|
101 |
-
url={https://arxiv.org/abs/2412.11834},
|
102 |
}
|
103 |
```
|
|
|
22 |
<a href="https://discord.gg/P2yYH95N" target="_blank" style="margin: 2px;">
|
23 |
<img alt="Discord" src="https://img.shields.io/badge/Discord-Small%20Doges-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
24 |
</a>
|
25 |
+
<!-- <a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;">
|
26 |
<img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/>
|
27 |
+
</a> -->
|
28 |
<a href="https://github.com/SmallDoges/small-doge" target="_blank" style="margin: 2px;">
|
29 |
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/>
|
30 |
</a>
|
|
|
33 |
</a>
|
34 |
</div>
|
35 |
|
36 |
+
Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture, paper coming soon, all training details and code are available in the [small-doge](https://github.com/SmallDoges/small-doge) repository.
|
37 |
|
38 |
|
39 |
## Uses
|
|
|
52 |
|
53 |
## Model Details
|
54 |
|
55 |
+
We build the Doge by doing Per-Training on [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus). If you want to continue pre-training this model, you can find the unconverged checkpoint [here](https://huggingface.co/SmallDoge/Doge-320M-checkpoint). These models has not been fine-tuned for instruction, the instruction model is [here](https://huggingface.co/SmallDoge/Doge-320M-Instruct).
|
|
|
|
|
|
|
|
|
56 |
|
|
|
57 |
|
58 |
**Pre-Training**:
|
59 |
|
60 |
+
| Model | Training Data | Steps | Content Length | Tokens | LR | Batch Size | Precision | RTX 4090 GPU hours |
|
61 |
+
|---|---|---|---|---|---|---|---|---|
|
62 |
+
| [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 8k | 2048 | 4B | 8e-3 | 0.5M | bfloat16 | 14 |
|
63 |
+
| [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 16k | 2048 | 16B | 6e-3 | 1M | bfloat16 | 128 |
|
64 |
+
| [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 24k | 2048 | 32B | 4e-3 | 1.5M | bfloat16 | 522 |
|
65 |
+
| [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M) | [HuggingFaceTB/smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 32k | 2048 | 64B | 2e-3 | 2M | bfloat16 | 1856 |
|
66 |
|
67 |
**Evaluation**:
|
68 |
|
69 |
+
| Model | MMLU | TriviaQA | ARC | PIQA | HellaSwag | OBQA | Winogrande | tokens / s on i7-11 CPU |
|
70 |
+
|---|---|---|---|---|---|---|---|---|
|
71 |
+
| [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | 25.4 | 0.03 | 29.8 | 58.4 | 27.3 | 25.6 | 50.2 | 142 |
|
72 |
+
| [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | 26.4 | 0.2 | 37.9 | 61.4 | 31.5 | 28.0 | 50.8 | 62 |
|
73 |
+
| [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | 29.2 | 4.8 | 44.4 | 70.1 | 43.4 | 34.4 | 52.2 | 28 |
|
74 |
+
| [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M) | 33.8 | 9.4 | 52.1 | 73.9 | 52.7 | 37.9 | 55.0 | 16 |
|
75 |
|
76 |
+
> [!NOTE]
|
77 |
> All evaluations are done using five-shot settings, without additional training on the benchmarks.
|
78 |
|
79 |
**Procedure**:
|
|
|
91 |
## Citation
|
92 |
|
93 |
```bibtex
|
94 |
+
@misc{smalldoges,
|
95 |
+
title={SmallDoges},
|
96 |
+
author={SmallDoge Team and Jingze, Shi and Yifan, Wu and Bingheng, Wu},
|
97 |
+
year={2025},
|
98 |
+
month={March},
|
|
|
|
|
|
|
99 |
}
|
100 |
```
|