Upload folder using huggingface_hub
Browse files- config.json +26 -0
- configuration_rwkv7.py +116 -0
- model.safetensors +3 -0
- modeling_rwkv7.py +874 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +214 -0
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Rwkv7ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_hidden_size": 2048,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_rwkv7.Rwkv7Config",
|
8 |
+
"AutoModelForCausalLM": "modeling_rwkv7.Rwkv7ForCausalLM"
|
9 |
+
},
|
10 |
+
"bos_token_id": 0,
|
11 |
+
"eos_token_id": 0,
|
12 |
+
"head_size": 64,
|
13 |
+
"hidden_size": 2048,
|
14 |
+
"intermediate_size": null,
|
15 |
+
"layer_norm_epsilon": 1e-05,
|
16 |
+
"lora_rank_decay": null,
|
17 |
+
"lora_rank_gate": null,
|
18 |
+
"lora_rank_iclr": null,
|
19 |
+
"lora_rank_value_residual_mix": null,
|
20 |
+
"model_type": "rwkv7",
|
21 |
+
"num_hidden_layers": 24,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"transformers_version": "4.46.2",
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 50304
|
26 |
+
}
|
configuration_rwkv7.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" RWKV configuration"""
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
RWKV7_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
25 |
+
|
26 |
+
|
27 |
+
class Rwkv7Config(PretrainedConfig):
|
28 |
+
"""
|
29 |
+
This is the configuration class to store the configuration of a [`Rwkv7Model`]. It is used to instantiate a RWKV7
|
30 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
31 |
+
defaults will yield a similar configuration to that of the RWVK-7
|
32 |
+
[RWKV/v7-Goose-1.6B-Pile-HF](https://huggingface.co/RWKV/v7-Goose-1.6B-Pile-HF) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 65536):
|
40 |
+
Vocabulary size of the RWKV7 model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`Rwkv7Model`].
|
42 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
43 |
+
Dimensionality of the embeddings and hidden states.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
45 |
+
Number of hidden layers in the model.
|
46 |
+
attention_hidden_size (`int`, *optional*):
|
47 |
+
Dimensionality of the attention hidden states. Will default to `hidden_size` if unset.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
49 |
+
The attention heads to use in rwkv7 self_attention module.
|
50 |
+
head_size (`int`, *optional*, defaults to 64): head_size of rwkv7 self_attention module.
|
51 |
+
intermediate_size (`int`, *optional*):
|
52 |
+
Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset.
|
53 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
54 |
+
The epsilon to use in the layer normalization layers.
|
55 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
56 |
+
The id of the beginning of sentence token in the vocabulary. Defaults to 0.
|
57 |
+
eos_token_id (`int`, *optional*, defaults to 0):
|
58 |
+
The id of the end of sentence token in the vocabulary. Defaults to 0.
|
59 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
60 |
+
Whether or not to tie the word embeddings with the input token embeddings.
|
61 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
62 |
+
Whether or not the model should return the last state.
|
63 |
+
|
64 |
+
|
65 |
+
Example:
|
66 |
+
|
67 |
+
```python
|
68 |
+
>>> from transformers import Rwkv7Config, Rwkv7Model
|
69 |
+
|
70 |
+
>>> # Initializing a Rwkv7 configuration
|
71 |
+
>>> configuration = Rwkv7Config()
|
72 |
+
|
73 |
+
>>> # Initializing a model (with random weights) from the configuration
|
74 |
+
>>> model = Rwkv7Model(configuration)
|
75 |
+
|
76 |
+
>>> # Accessing the model configuration
|
77 |
+
>>> configuration = model.config
|
78 |
+
```"""
|
79 |
+
|
80 |
+
model_type = "rwkv7"
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
vocab_size=65536,
|
85 |
+
hidden_size=768,
|
86 |
+
num_hidden_layers=24,
|
87 |
+
attention_hidden_size=None,
|
88 |
+
head_size=64,
|
89 |
+
intermediate_size=None,
|
90 |
+
lora_rank_decay=None,
|
91 |
+
lora_rank_iclr=None,
|
92 |
+
lora_rank_value_residual_mix=None,
|
93 |
+
lora_rank_gate=None,
|
94 |
+
layer_norm_epsilon=1e-5,
|
95 |
+
bos_token_id=0,
|
96 |
+
eos_token_id=0,
|
97 |
+
tie_word_embeddings=False,
|
98 |
+
use_cache=True,
|
99 |
+
**kwargs,
|
100 |
+
):
|
101 |
+
self.vocab_size = vocab_size
|
102 |
+
self.hidden_size = hidden_size
|
103 |
+
self.num_hidden_layers = num_hidden_layers
|
104 |
+
self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size
|
105 |
+
self.head_size = head_size
|
106 |
+
self.intermediate_size = intermediate_size
|
107 |
+
self.lora_rank_decay = lora_rank_decay
|
108 |
+
self.lora_rank_iclr = lora_rank_iclr
|
109 |
+
self.lora_rank_value_residual_mix = lora_rank_value_residual_mix
|
110 |
+
self.lora_rank_gate = lora_rank_gate
|
111 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
112 |
+
self.use_cache = use_cache
|
113 |
+
|
114 |
+
super().__init__(
|
115 |
+
tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs
|
116 |
+
)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01d1b9c811799e33f691a4628d5662c02c309dc3f718e052ccbdfb5ef9c8ea3c
|
3 |
+
size 2930113328
|
modeling_rwkv7.py
ADDED
@@ -0,0 +1,874 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The RWKV team and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch RWKV7 World model."""
|
16 |
+
|
17 |
+
from dataclasses import dataclass
|
18 |
+
from typing import List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import math
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import CrossEntropyLoss
|
28 |
+
|
29 |
+
from transformers.modeling_utils import PreTrainedModel, GenerationMixin, _init_weights
|
30 |
+
from transformers.utils import (
|
31 |
+
ModelOutput,
|
32 |
+
add_code_sample_docstrings,
|
33 |
+
add_start_docstrings,
|
34 |
+
add_start_docstrings_to_model_forward,
|
35 |
+
is_ninja_available,
|
36 |
+
is_torch_cuda_available,
|
37 |
+
logging,
|
38 |
+
)
|
39 |
+
|
40 |
+
from .configuration_rwkv7 import Rwkv7Config
|
41 |
+
|
42 |
+
# MIT License
|
43 |
+
|
44 |
+
# Copyright (c) 2024 Songlin Yang
|
45 |
+
|
46 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
47 |
+
# of this software and associated documentation files (the "Software"), to deal
|
48 |
+
# in the Software without restriction, including without limitation the rights
|
49 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
50 |
+
# copies of the Software, and to permit persons to whom the Software is
|
51 |
+
# furnished to do so, subject to the following conditions:
|
52 |
+
|
53 |
+
# The above copyright notice and this permission notice shall be included in all
|
54 |
+
# copies or substantial portions of the Software.
|
55 |
+
|
56 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
57 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
58 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
59 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
60 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
61 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
62 |
+
# SOFTWARE.
|
63 |
+
|
64 |
+
# Copyright (c) 2024, Johan Sokrates Wind
|
65 |
+
|
66 |
+
import torch as th
|
67 |
+
import triton
|
68 |
+
import triton.language as tl
|
69 |
+
|
70 |
+
@triton.jit
|
71 |
+
def IND4(a,b,c,d,nb,nc,nd):
|
72 |
+
return ((a*nb+b)*nc+c)*nd+d
|
73 |
+
@triton.jit
|
74 |
+
def IND5(a,b,c,d,e,nb,nc,nd,ne):
|
75 |
+
return (((a*nb+b)*nc+c)*nd+d)*ne+e
|
76 |
+
|
77 |
+
@triton.jit
|
78 |
+
def _prod(a,b): return a*b
|
79 |
+
|
80 |
+
# inv(I-A) where A is a strictly lower triangular nxn matrix
|
81 |
+
@triton.jit
|
82 |
+
def tri_minv(A, n:tl.constexpr, prec:tl.constexpr):
|
83 |
+
i = tl.arange(0,n)
|
84 |
+
prod = (i[None,:]==i[:,None]).to(tl.float32)
|
85 |
+
for j in range(n-1):
|
86 |
+
prod += tl_dot(prec, prod, (A*((i[None,:]==j)*(i[:,None]>i[None,:]))).trans())
|
87 |
+
return prod.trans()
|
88 |
+
|
89 |
+
@triton.jit
|
90 |
+
def fw_attn_triton(w_,q_,k_,v_,a_,b_, s0_,y_,s_,sT_, B:tl.constexpr,T:tl.constexpr,H:tl.constexpr,C:tl.constexpr,dT:tl.constexpr, prec:tl.constexpr):
|
91 |
+
bi = tl.program_id(1)
|
92 |
+
hi = tl.program_id(0)
|
93 |
+
|
94 |
+
i = tl.arange(0,C)[None,:]
|
95 |
+
state = tl.load(s0_+IND4(bi,hi,i.trans(),i, H,C,C)).to(tl.float32)
|
96 |
+
for t0 in range(T//dT):
|
97 |
+
t = t0*dT+tl.arange(0,dT)[:,None]
|
98 |
+
sw = tl.load(w_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
|
99 |
+
sq = tl.load(q_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
|
100 |
+
sk = tl.load(k_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
|
101 |
+
sv = tl.load(v_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
|
102 |
+
sa = tl.load(a_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
|
103 |
+
sb = tl.load(b_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
|
104 |
+
|
105 |
+
w = (-sw.exp()).exp()
|
106 |
+
fw = tl.reduce(w, 0, _prod, keep_dims=True)
|
107 |
+
incl_pref = tl.cumprod(w,axis=0)
|
108 |
+
non_incl_pref = incl_pref / w
|
109 |
+
inv_incl_pref = 1 / incl_pref
|
110 |
+
|
111 |
+
wq = sq * incl_pref
|
112 |
+
wa = sa * non_incl_pref
|
113 |
+
kwi = sk * inv_incl_pref
|
114 |
+
bwi = sb * inv_incl_pref
|
115 |
+
|
116 |
+
mask1 = (t > t.trans())
|
117 |
+
ab = tl_dot(prec, wa, bwi.trans()) * mask1
|
118 |
+
ak = tl_dot(prec, wa, kwi.trans()) * mask1
|
119 |
+
|
120 |
+
ab_inv = tri_minv(ab, dT, prec)
|
121 |
+
|
122 |
+
ab_u = tl_dot(prec, ak, sv) + tl_dot(prec, wa, state.trans())
|
123 |
+
u = tl_dot(prec, ab_inv, ab_u)
|
124 |
+
mask2 = (t >= t.trans())
|
125 |
+
qk = tl_dot(prec, wq, kwi.trans()) * mask2
|
126 |
+
qb = tl_dot(prec, wq, bwi.trans()) * mask2
|
127 |
+
yy = tl_dot(prec, qk, sv) + tl_dot(prec, qb, u) + tl_dot(prec, wq, state.trans())
|
128 |
+
tl.store(y_+IND4(bi,t,hi,i, T,H,C), yy.to(tl.bfloat16))
|
129 |
+
|
130 |
+
tl.store(s_+IND5(bi,hi,t0,i.trans(),i, H,T//dT,C,C), state.to(tl.float32))
|
131 |
+
state = state * fw + tl_dot(prec, sv.trans(), kwi*fw) + tl_dot(prec, u.trans(), bwi*fw)
|
132 |
+
tl.store(sT_+IND4(bi,hi,i.trans(),i, H,C,C), state.to(tl.bfloat16))
|
133 |
+
|
134 |
+
@triton.jit
|
135 |
+
def bw_attn_triton(w_,q_,k_,v_,a_,b_, dy_,s_,dsT_, dw_,dq_,dk_,dv_,da_,db_,ds0_, B:tl.constexpr,T:tl.constexpr,H:tl.constexpr,C:tl.constexpr,dT:tl.constexpr, prec:tl.constexpr):
|
136 |
+
bi = tl.program_id(1)
|
137 |
+
hi = tl.program_id(0)
|
138 |
+
|
139 |
+
i = tl.arange(0,C)[None,:]
|
140 |
+
dstate = tl.load(dsT_+IND4(bi,hi,i.trans(),i, H,C,C)).to(tl.float32)
|
141 |
+
|
142 |
+
for t0 in range(T//dT-1,-1,-1):
|
143 |
+
t = t0*dT+tl.arange(0,dT)[:,None]
|
144 |
+
|
145 |
+
state = tl.load(s_+IND5(bi,hi,t0,i.trans(),i, H,T//dT,C,C)).to(tl.float32)
|
146 |
+
|
147 |
+
sw = tl.load(w_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
|
148 |
+
sq = tl.load(q_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
|
149 |
+
sk = tl.load(k_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
|
150 |
+
sv = tl.load(v_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
|
151 |
+
sa = tl.load(a_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
|
152 |
+
sb = tl.load(b_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
|
153 |
+
sdy = tl.load(dy_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
|
154 |
+
|
155 |
+
dw_fac = -sw.exp()
|
156 |
+
w = dw_fac.exp()
|
157 |
+
fw = tl.reduce(w, 0, _prod, keep_dims=True)
|
158 |
+
incl_pref = tl.cumprod(w,axis=0)
|
159 |
+
non_incl_pref = incl_pref / w
|
160 |
+
inv_incl_pref = 1 / incl_pref
|
161 |
+
|
162 |
+
wq = sq * incl_pref
|
163 |
+
wa = sa * non_incl_pref
|
164 |
+
kwi = sk * inv_incl_pref
|
165 |
+
bwi = sb * inv_incl_pref
|
166 |
+
|
167 |
+
mask1 = (t > t.trans())
|
168 |
+
ab = tl_dot(prec, wa, bwi.trans()) * mask1
|
169 |
+
ak = tl_dot(prec, wa, kwi.trans()) * mask1
|
170 |
+
|
171 |
+
ab_inv = tri_minv(ab, dT, prec)
|
172 |
+
|
173 |
+
ab_u = tl_dot(prec, ak, sv) + tl_dot(prec, wa, state.trans())
|
174 |
+
u = tl_dot(prec, ab_inv, ab_u)
|
175 |
+
mask2 = (t >= t.trans())
|
176 |
+
qk = tl_dot(prec, wq, kwi.trans()) * mask2
|
177 |
+
qb = tl_dot(prec, wq, bwi.trans()) * mask2
|
178 |
+
|
179 |
+
du = tl_dot(prec, qb.trans(), sdy) + tl_dot(prec, bwi*fw, dstate.trans())
|
180 |
+
dab_u = tl_dot(prec, ab_inv.trans(), du)
|
181 |
+
|
182 |
+
dv = tl_dot(prec, qk.trans(), sdy) + tl_dot(prec, kwi*fw, dstate.trans()) + tl_dot(prec, ak.trans(), dab_u)
|
183 |
+
tl.store(dv_+IND4(bi,t,hi,i, T,H,C), dv.to(tl.bfloat16))
|
184 |
+
|
185 |
+
dab = tl_dot(prec, tl_dot(prec, ab_inv.trans(), du), u.trans()) * mask1
|
186 |
+
dak = tl_dot(prec, dab_u, sv.trans()) * mask1
|
187 |
+
dab_u_state = tl_dot(prec, dab_u, state)
|
188 |
+
da = non_incl_pref * (tl_dot(prec, dab, bwi) + tl_dot(prec, dak, kwi) + dab_u_state)
|
189 |
+
tl.store(da_+IND4(bi,t,hi,i, T,H,C), da.to(tl.bfloat16))
|
190 |
+
|
191 |
+
dqb = tl_dot(prec, sdy, u.trans()) * mask2
|
192 |
+
dqk = tl_dot(prec, sdy, sv.trans()) * mask2
|
193 |
+
dy_state = tl_dot(prec, sdy, state)
|
194 |
+
dq = incl_pref * (tl_dot(prec, dqb, bwi) + tl_dot(prec, dqk, kwi) + dy_state)
|
195 |
+
tl.store(dq_+IND4(bi,t,hi,i, T,H,C), dq.to(tl.bfloat16))
|
196 |
+
|
197 |
+
fw_u_dstate = fw * tl_dot(prec, u, dstate)
|
198 |
+
db = inv_incl_pref * (tl_dot(prec, dab.trans(), wa) + tl_dot(prec, dqb.trans(), wq) + fw_u_dstate)
|
199 |
+
tl.store(db_+IND4(bi,t,hi,i, T,H,C), db.to(tl.bfloat16))
|
200 |
+
|
201 |
+
fw_v_dstate = fw * tl_dot(prec, sv, dstate)
|
202 |
+
dk = inv_incl_pref * (tl_dot(prec, dak.trans(), wa) + tl_dot(prec, dqk.trans(), wq) + fw_v_dstate)
|
203 |
+
tl.store(dk_+IND4(bi,t,hi,i, T,H,C), dk.to(tl.bfloat16))
|
204 |
+
|
205 |
+
dw0 = fw * tl.sum(state*dstate, axis=0,keep_dims=True)
|
206 |
+
for k in range(t0*dT,t0*dT+dT):
|
207 |
+
lmask = (t<k).trans()
|
208 |
+
A = (tl_dot(prec, dab*lmask, bwi) + tl_dot(prec, dak*lmask, kwi)) * wa * (t>k)
|
209 |
+
A += (tl_dot(prec, dqb*lmask, bwi) + tl_dot(prec, dqk*lmask, kwi)) * wq * (t>=k)
|
210 |
+
A += (fw_v_dstate*kwi + fw_u_dstate*bwi) * (t<k)
|
211 |
+
A += dab_u_state*wa * (t>k) + dy_state*wq * (t>=k)
|
212 |
+
dw = tl.sum(A, axis=0,keep_dims=True) + dw0
|
213 |
+
|
214 |
+
wk = tl.load(w_+IND4(bi,k,hi,i, T,H,C)).to(tl.float32)
|
215 |
+
dw *= -wk.exp()
|
216 |
+
tl.store(dw_+IND4(bi,k,hi,i, T,H,C), dw.to(tl.bfloat16))
|
217 |
+
|
218 |
+
dstate = dstate * fw + tl_dot(prec, sdy.trans(), wq) + tl_dot(prec, dab_u.trans(), wa)
|
219 |
+
tl.store(ds0_+IND4(bi,hi,i.trans(),i, H,C,C), dstate.to(tl.bfloat16))
|
220 |
+
|
221 |
+
|
222 |
+
class TritonRWKV7(th.autograd.Function):
|
223 |
+
@staticmethod
|
224 |
+
def forward(ctx, w,q,k,v,z,b,s0, dot_prec):
|
225 |
+
K = 16
|
226 |
+
B,T,H,C = w.shape
|
227 |
+
s0 = th.zeros(B,H,C,C, dtype=w.dtype,device=w.device) if s0 is None else s0
|
228 |
+
y = th.empty_like(v)
|
229 |
+
sT = th.empty_like(s0)
|
230 |
+
s = th.zeros(B,H,T//K,C,C, dtype=th.float32,device=w.device)
|
231 |
+
fw_attn_triton[(H,B)](w,q,k,v,z,b, s0,y,s,sT, B,T,H,C,K, dot_prec)
|
232 |
+
ctx.dot_prec = dot_prec
|
233 |
+
ctx.save_for_backward(w,q,k,v,z,b,s)
|
234 |
+
return y, sT
|
235 |
+
@staticmethod
|
236 |
+
def backward(ctx, dy, dsT):
|
237 |
+
K = 16
|
238 |
+
w,q,k,v,z,b,s = ctx.saved_tensors
|
239 |
+
B,T,H,C = w.shape
|
240 |
+
dw,dq,dk,dv,dz,db,ds0 = [th.empty_like(x) for x in [w,q,k,v,z,b,dsT]]
|
241 |
+
bw_attn_triton[(H,B)](w,q,k,v,z,b, dy,s,dsT, dw,dq,dk,dv,dz,db,ds0, B,T,H,C,K, ctx.dot_prec)
|
242 |
+
return dw,dq,dk,dv,dz,db,ds0,None
|
243 |
+
|
244 |
+
@triton.jit
|
245 |
+
def tl_dot(prec:tl.constexpr, a, b) -> torch.Tensor:
|
246 |
+
if prec == 'fp32':
|
247 |
+
return tl.dot(a.to(tl.float32),b.trans().to(tl.float32).trans(), allow_tf32=False)
|
248 |
+
elif prec == 'tf32':
|
249 |
+
return tl.dot(a.to(tl.float32),b.trans().to(tl.float32).trans(), allow_tf32=True)
|
250 |
+
elif prec == 'bf16':
|
251 |
+
return tl.dot(a.to(tl.bfloat16),b.trans().to(tl.bfloat16).trans(), allow_tf32=True)
|
252 |
+
else:
|
253 |
+
tl.static_assert(False)
|
254 |
+
|
255 |
+
def rwkv7_attn_triton(r,w,k,v,a,b, HEAD_SIZE, dot_prec = 'fp32'):
|
256 |
+
B,T,HC = w.shape
|
257 |
+
C = HEAD_SIZE
|
258 |
+
H = HC//C
|
259 |
+
r,w,k,v,a,b = [i.view(B,T,H,C) for i in [r,w,k,v,a,b]]
|
260 |
+
s0 = th.zeros(B,H,C,C, dtype=th.bfloat16,device=w.device)
|
261 |
+
return TritonRWKV7.apply(w,r,k,v,a,b,s0,dot_prec)[0].view(B,T,HC)
|
262 |
+
|
263 |
+
logger = logging.get_logger(__name__)
|
264 |
+
|
265 |
+
_CHECKPOINT_FOR_DOC = "RWKV/v7-Goose-1.6B-Pile-HF"
|
266 |
+
_CONFIG_FOR_DOC = "Rwkv7Config"
|
267 |
+
|
268 |
+
class Rwkv7SelfAttention(nn.Module):
|
269 |
+
def __init__(self, config, layer_id=0):
|
270 |
+
super().__init__()
|
271 |
+
self.config = config
|
272 |
+
self.layer_id = layer_id
|
273 |
+
C = hidden_size = config.hidden_size
|
274 |
+
attention_hidden_size = config.attention_hidden_size
|
275 |
+
self.attention_hidden_size = attention_hidden_size
|
276 |
+
H = self.num_heads = attention_hidden_size // config.head_size
|
277 |
+
N = self.head_size = config.head_size
|
278 |
+
|
279 |
+
calc_lora_rank = lambda exponent, multiplier: max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
|
280 |
+
lora_rank_decay = config.lora_rank_decay or calc_lora_rank(0.5, 1.8)
|
281 |
+
lora_rank_iclr = config.lora_rank_iclr or calc_lora_rank(0.5, 1.8)
|
282 |
+
lora_rank_value_residual_mix = config.lora_rank_value_residual_mix or calc_lora_rank(0.5, 1.3)
|
283 |
+
lora_rank_gate = config.lora_rank_gate or calc_lora_rank(0.8, 0.6)
|
284 |
+
|
285 |
+
self.x_r = nn.Parameter(torch.empty(1,1,C))
|
286 |
+
self.x_w = nn.Parameter(torch.empty(1,1,C))
|
287 |
+
self.x_k = nn.Parameter(torch.empty(1,1,C))
|
288 |
+
self.x_v = nn.Parameter(torch.empty(1,1,C))
|
289 |
+
self.x_a = nn.Parameter(torch.empty(1,1,C))
|
290 |
+
self.x_g = nn.Parameter(torch.empty(1,1,C))
|
291 |
+
|
292 |
+
self.w0 = nn.Parameter(torch.empty(1,1,C))
|
293 |
+
self.w1 = nn.Parameter(torch.empty(C, lora_rank_decay))
|
294 |
+
self.w2 = nn.Parameter(torch.empty(lora_rank_decay, C))
|
295 |
+
|
296 |
+
self.a0 = nn.Parameter(torch.empty(1,1,C))
|
297 |
+
self.a1 = nn.Parameter(torch.empty(C, lora_rank_iclr))
|
298 |
+
self.a2 = nn.Parameter(torch.empty(lora_rank_iclr, C))
|
299 |
+
|
300 |
+
if layer_id > 0:
|
301 |
+
self.v0 = nn.Parameter(torch.empty(1,1,C))
|
302 |
+
self.v1 = nn.Parameter(torch.empty(C, lora_rank_value_residual_mix))
|
303 |
+
self.v2 = nn.Parameter(torch.empty(lora_rank_value_residual_mix, C))
|
304 |
+
|
305 |
+
self.g1 = nn.Parameter(torch.empty(C, lora_rank_gate))
|
306 |
+
self.g2 = nn.Parameter(torch.empty(lora_rank_gate, C))
|
307 |
+
|
308 |
+
self.k_k = nn.Parameter(torch.empty(1,1,C))
|
309 |
+
self.k_a = nn.Parameter(torch.empty(1,1,C))
|
310 |
+
self.r_k = nn.Parameter(torch.empty(H,N))
|
311 |
+
|
312 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
313 |
+
self.receptance = nn.Linear(C, C, bias=False)
|
314 |
+
self.key = nn.Linear(C, C, bias=False)
|
315 |
+
self.value = nn.Linear(C, C, bias=False)
|
316 |
+
self.output = nn.Linear(C, C, bias=False)
|
317 |
+
self.ln_x = nn.GroupNorm(H, C, eps=self.head_size * 1e-5)
|
318 |
+
|
319 |
+
|
320 |
+
def forward(self, hidden, state=None, v_first=None, use_cache=False, seq_mode=True):
|
321 |
+
# Mix hidden with the previous timestep to produce key, value, receptance
|
322 |
+
if hidden.size(1) == 1 and state is not None:
|
323 |
+
shifted = state[0][self.layer_id]
|
324 |
+
else:
|
325 |
+
shifted = self.time_shift(hidden)
|
326 |
+
if state is not None:
|
327 |
+
shifted[:, 0] = state[0][self.layer_id]
|
328 |
+
if len(shifted.size()) == 2:
|
329 |
+
shifted = shifted.unsqueeze(1)
|
330 |
+
|
331 |
+
x = hidden
|
332 |
+
|
333 |
+
B, T, C = hidden.shape
|
334 |
+
H = self.num_heads
|
335 |
+
N = self.head_size
|
336 |
+
|
337 |
+
xx = shifted - x
|
338 |
+
|
339 |
+
xr = x+xx*self.x_r
|
340 |
+
xw = x+xx*self.x_w
|
341 |
+
xk = x+xx*self.x_k
|
342 |
+
xv = x+xx*self.x_v
|
343 |
+
xa = x+xx*self.x_a
|
344 |
+
xg = x+xx*self.x_g
|
345 |
+
|
346 |
+
r = self.receptance(xr)
|
347 |
+
w = torch.tanh(xw @ self.w1) @ self.w2
|
348 |
+
k = self.key(xk)
|
349 |
+
v = self.value(xv)
|
350 |
+
a = torch.sigmoid(self.a0 + (xa @ self.a1) @ self.a2)
|
351 |
+
g = torch.sigmoid(xg @ self.g1) @ self.g2
|
352 |
+
|
353 |
+
kk = torch.nn.functional.normalize((k * self.k_k).view(B,T,H,-1), dim=-1, p=2.0).view(B,T,-1)
|
354 |
+
k = k * (1 + (a-1) * self.k_a)
|
355 |
+
if self.layer_id == 0: v_first = v
|
356 |
+
else: v = v + (v_first - v) * torch.sigmoid(self.v0 + (xv @ self.v1) @ self.v2)
|
357 |
+
|
358 |
+
if T == 1 or not self.training:
|
359 |
+
w = torch.exp(-0.606531 * torch.sigmoid((self.w0 + w).float())) # 0.606531 = exp(-0.5)
|
360 |
+
vk_state = state[1][self.layer_id]
|
361 |
+
for t in range(T):
|
362 |
+
r_, w_, k_, v_, kk_, a_ = r[:,t], w[:,t], k[:,t], v[:,t], kk[:,t], a[:,t]
|
363 |
+
vk = v_.view(B,H,N,1) @ k_.view(B,H,1,N)
|
364 |
+
ab = (-kk_).view(B,H,N,1) @ (kk_*a_).view(B,H,1,N)
|
365 |
+
vk_state = vk_state * w_.view(B,H,1,N) + vk_state @ ab.float() + vk.float()
|
366 |
+
xx[:,t] = (vk_state.to(dtype=x.dtype) @ r_.view(B,H,N,1)).view(B,H*N)
|
367 |
+
state[1][self.layer_id] = vk_state
|
368 |
+
# FIXME - support fast triton kernel for non-training pre-fill with state in and out
|
369 |
+
else:
|
370 |
+
w = -torch.nn.functional.softplus(-(self.w0 + w)) - 0.5
|
371 |
+
rwkv7_attn_triton(r, w, k, v, -kk, kk*a, self.head_size)
|
372 |
+
|
373 |
+
xx = torch.nn.functional.group_norm(xx.view(B*T,H*N), num_groups=H, weight=self.ln_x.weight, bias=self.ln_x.bias, eps = self.ln_x.eps).view(B,T,H*N)
|
374 |
+
xx = xx + ((r.view(B,T,H,-1)*k.view(B,T,H,-1)*self.r_k).sum(dim=-1, keepdim=True) * v.view(B,T,H,-1)).view(B,T,C)
|
375 |
+
xx = self.output(xx * g)
|
376 |
+
|
377 |
+
if state is not None:
|
378 |
+
state[0][self.layer_id] = hidden[:, -1]
|
379 |
+
|
380 |
+
return xx, state, v_first
|
381 |
+
|
382 |
+
|
383 |
+
class Rwkv7FeedForward(nn.Module):
|
384 |
+
def __init__(self, config, layer_id=0):
|
385 |
+
super().__init__()
|
386 |
+
self.config = config
|
387 |
+
self.layer_id = layer_id
|
388 |
+
hidden_size = config.hidden_size
|
389 |
+
intermediate_size = (
|
390 |
+
config.intermediate_size
|
391 |
+
if config.intermediate_size is not None
|
392 |
+
else int(config.hidden_size * 4)
|
393 |
+
)
|
394 |
+
|
395 |
+
|
396 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
397 |
+
|
398 |
+
self.x_k = nn.Parameter(torch.empty(1, 1, hidden_size))
|
399 |
+
|
400 |
+
self.key = nn.Linear(hidden_size, intermediate_size, bias=False)
|
401 |
+
self.value = nn.Linear(intermediate_size, hidden_size, bias=False)
|
402 |
+
|
403 |
+
def forward(self, hidden, state=None):
|
404 |
+
if hidden.size(1) == 1 and state is not None:
|
405 |
+
shifted = state[2][self.layer_id]
|
406 |
+
else:
|
407 |
+
shifted = self.time_shift(hidden)
|
408 |
+
if state is not None:
|
409 |
+
shifted[:, 0] = state[2][self.layer_id]
|
410 |
+
if len(shifted.size()) == 2:
|
411 |
+
shifted = shifted.unsqueeze(1)
|
412 |
+
|
413 |
+
delta_hidden_to_shifted = shifted - hidden
|
414 |
+
key = hidden + delta_hidden_to_shifted * self.x_k
|
415 |
+
|
416 |
+
key = torch.square(torch.relu(self.key(key)))
|
417 |
+
value = self.value(key)
|
418 |
+
|
419 |
+
if state is not None:
|
420 |
+
state[2][self.layer_id] = hidden[:, -1]
|
421 |
+
|
422 |
+
return value, state
|
423 |
+
|
424 |
+
|
425 |
+
class Rwkv7Block(nn.Module):
|
426 |
+
def __init__(self, config, layer_id):
|
427 |
+
super().__init__()
|
428 |
+
self.config = config
|
429 |
+
self.layer_id = layer_id
|
430 |
+
|
431 |
+
self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
432 |
+
self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
433 |
+
|
434 |
+
self.attention = Rwkv7SelfAttention(config, layer_id)
|
435 |
+
self.feed_forward = Rwkv7FeedForward(config, layer_id)
|
436 |
+
|
437 |
+
def forward(self, hidden, state=None, v_first=None, use_cache=False, output_attentions=False, seq_mode=True):
|
438 |
+
attention, state, v_first = self.attention(self.ln1(hidden), state=state, v_first=v_first, use_cache=use_cache, seq_mode=seq_mode)
|
439 |
+
hidden = hidden + attention
|
440 |
+
|
441 |
+
feed_forward, state = self.feed_forward(self.ln2(hidden), state=state)
|
442 |
+
hidden = hidden + feed_forward
|
443 |
+
|
444 |
+
outputs = (hidden, state, v_first)
|
445 |
+
if output_attentions:
|
446 |
+
outputs += (attention,)
|
447 |
+
else:
|
448 |
+
outputs += (None,)
|
449 |
+
|
450 |
+
return outputs
|
451 |
+
|
452 |
+
|
453 |
+
class Rwkv7PreTrainedModel(PreTrainedModel):
|
454 |
+
"""
|
455 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
456 |
+
models.
|
457 |
+
"""
|
458 |
+
|
459 |
+
config_class = Rwkv7Config
|
460 |
+
base_model_prefix = "rwkv7"
|
461 |
+
_no_split_modules = ["Rwkv7Block"]
|
462 |
+
_keep_in_fp32_modules = []
|
463 |
+
supports_gradient_checkpointing = True
|
464 |
+
|
465 |
+
def _init_weights(self, module):
|
466 |
+
return
|
467 |
+
|
468 |
+
"""Initialize the weights."""
|
469 |
+
if isinstance(module, Rwkv7SelfAttention):
|
470 |
+
layer_id = module.layer_id
|
471 |
+
num_hidden_layers = module.config.num_hidden_layers
|
472 |
+
hidden_size = module.config.hidden_size
|
473 |
+
attention_hidden_size = module.attention_hidden_size
|
474 |
+
head_size = module.config.head_size
|
475 |
+
num_heads = attention_hidden_size // head_size
|
476 |
+
|
477 |
+
ratio_0_to_1 = layer_id / (num_hidden_layers - 1) # 0 to 1
|
478 |
+
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
|
479 |
+
|
480 |
+
time_weight = torch.tensor(
|
481 |
+
[i / hidden_size for i in range(hidden_size)],
|
482 |
+
dtype=module.x_k.dtype,
|
483 |
+
device=module.x_k.device,
|
484 |
+
)
|
485 |
+
time_weight = time_weight[None, None, :]
|
486 |
+
|
487 |
+
decay_speed = [
|
488 |
+
-7.0 + 5.0 * (n / (attention_hidden_size - 1)) ** (0.85 + 1.0 * ratio_0_to_1 ** 0.5)
|
489 |
+
for n in range(attention_hidden_size)
|
490 |
+
]
|
491 |
+
decay_speed = torch.tensor(decay_speed, dtype=module.w0.dtype, device=module.w0.device)
|
492 |
+
|
493 |
+
with torch.no_grad():
|
494 |
+
module.x_r.copy_( 1.0 - torch.pow(time_weight, 0.2 * ratio_1_to_almost0) )
|
495 |
+
module.x_w.copy_( 1.0 - torch.pow(time_weight, 0.9 * ratio_1_to_almost0) )
|
496 |
+
module.x_k.copy_( 1.0 - (torch.pow(time_weight, 0.9 * ratio_1_to_almost0) + 0.4 * ratio_0_to_1) )
|
497 |
+
module.x_v.copy_( 1.0 - (torch.pow(time_weight, 0.4 * ratio_1_to_almost0) + 0.6 * ratio_0_to_1) )
|
498 |
+
module.x_a.copy_( 1.0 - torch.pow(time_weight, 0.9 * ratio_1_to_almost0) )
|
499 |
+
module.x_g.copy_( 1.0 - torch.pow(time_weight, 0.2 * ratio_1_to_almost0) )
|
500 |
+
|
501 |
+
def ortho_init(x, scale):
|
502 |
+
with torch.no_grad():
|
503 |
+
shape = x.shape
|
504 |
+
if len(shape) == 2:
|
505 |
+
gain = math.sqrt(shape[0] / shape[1]) if shape[0] > shape[1] else 1
|
506 |
+
nn.init.orthogonal_(x, gain=gain * scale)
|
507 |
+
elif len(shape) == 3:
|
508 |
+
gain = math.sqrt(shape[1] / shape[2]) if shape[1] > shape[2] else 1
|
509 |
+
for i in range(shape[0]):
|
510 |
+
nn.init.orthogonal_(x[i], gain=gain * scale)
|
511 |
+
else:
|
512 |
+
assert False
|
513 |
+
return x
|
514 |
+
|
515 |
+
module.w0.copy_(decay_speed.reshape(1,1,attention_hidden_size) + 0.5) # !!! 0.5 comes from F.softplus !!!
|
516 |
+
module.w1.zero_()
|
517 |
+
ortho_init(module.w2, 0.1)
|
518 |
+
|
519 |
+
module.a0.zero_()
|
520 |
+
module.a1.zero_()
|
521 |
+
ortho_init(module.a2, 0.1)
|
522 |
+
|
523 |
+
module.v0.copy_(1.0)
|
524 |
+
module.v1.zero_()
|
525 |
+
ortho_init(module.v2, 0.1)
|
526 |
+
|
527 |
+
module.g1.zero_()
|
528 |
+
ortho_init(module.g2, 0.1)
|
529 |
+
|
530 |
+
self.k_k.copy_(0.85)
|
531 |
+
self.k_a.copy_(1.0)
|
532 |
+
self.r_k.zero_()
|
533 |
+
|
534 |
+
module.receptance.weight.data.uniform_(-0.5/(hidden_size**0.5), 0.5/(attention_hidden_size**0.5))
|
535 |
+
module.key.weight.data.uniform_(-0.05/(hidden_size**0.5), 0.05/(attention_hidden_size**0.5))
|
536 |
+
module.value.weight.data.uniform_(-0.5/(hidden_size**0.5), 0.5/(attention_hidden_size**0.5))
|
537 |
+
module.output.weight.data.zero_()
|
538 |
+
|
539 |
+
elif isinstance(module, Rwkv7FeedForward):
|
540 |
+
layer_id = module.layer_id
|
541 |
+
num_hidden_layers = module.config.num_hidden_layers
|
542 |
+
hidden_size = module.config.hidden_size
|
543 |
+
|
544 |
+
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
|
545 |
+
|
546 |
+
time_weight = torch.tensor(
|
547 |
+
[i / hidden_size for i in range(hidden_size)],
|
548 |
+
dtype=module.x_k.dtype,
|
549 |
+
device=module.x_k.device,
|
550 |
+
)
|
551 |
+
time_weight = time_weight[None, None, :]
|
552 |
+
|
553 |
+
with torch.no_grad():
|
554 |
+
module.x_k.copy_( 1.0 - torch.pow(time_weight, ratio_1_to_almost0**4) )
|
555 |
+
|
556 |
+
self.key.weight.data.uniform_(-0.5/(hidden_size**0.5), 0.5/(hidden_size**0.5))
|
557 |
+
self.value.weight.data.zero_()
|
558 |
+
|
559 |
+
@dataclass
|
560 |
+
class Rwkv7Output(ModelOutput):
|
561 |
+
"""
|
562 |
+
Class for the RWKV model outputs.
|
563 |
+
Args:
|
564 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
565 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
566 |
+
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
|
567 |
+
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
568 |
+
avoid providing the old `input_ids`.
|
569 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
570 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
571 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
|
572 |
+
the model at the output of each layer plus the optional initial embedding outputs.
|
573 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
574 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
575 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
576 |
+
the self-attention heads.
|
577 |
+
"""
|
578 |
+
|
579 |
+
last_hidden_state: torch.FloatTensor = None
|
580 |
+
state: Optional[List[torch.FloatTensor]] = None
|
581 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
582 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
583 |
+
|
584 |
+
|
585 |
+
@dataclass
|
586 |
+
class Rwkv7CausalLMOutput(ModelOutput):
|
587 |
+
"""
|
588 |
+
Base class for causal language model (or autoregressive) outputs.
|
589 |
+
Args:
|
590 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
591 |
+
Language modeling loss (for next-token prediction).
|
592 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
593 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
594 |
+
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
|
595 |
+
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
596 |
+
avoid providing the old `input_ids`.
|
597 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
598 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
599 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
|
600 |
+
the model at the output of each layer plus the optional initial embedding outputs.
|
601 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
602 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
603 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
604 |
+
the self-attention heads.
|
605 |
+
"""
|
606 |
+
|
607 |
+
loss: Optional[torch.FloatTensor] = None
|
608 |
+
logits: torch.FloatTensor = None
|
609 |
+
state: Optional[List[torch.FloatTensor]] = None
|
610 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
611 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
612 |
+
|
613 |
+
|
614 |
+
RWKV7_START_DOCSTRING = r"""
|
615 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
616 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
617 |
+
etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)
|
618 |
+
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
619 |
+
general usage and behavior.
|
620 |
+
Parameters:
|
621 |
+
config ([`Rwkv7Config`]): Model configuration class with all the parameters of the model.
|
622 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
623 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
624 |
+
"""
|
625 |
+
|
626 |
+
RWKV7_INPUTS_DOCSTRING = r"""
|
627 |
+
Args:
|
628 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
629 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
630 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
631 |
+
sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their
|
632 |
+
past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See
|
633 |
+
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
|
634 |
+
IDs?](../glossary#input-ids)
|
635 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
636 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
637 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
638 |
+
model's internal embedding lookup matrix.
|
639 |
+
state (tuple of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`, *optional*):
|
640 |
+
If passed along, the model uses the previous state in all the blocks (which will give the output for the
|
641 |
+
`input_ids` provided as if the model add `state_input_ids + input_ids` as context).
|
642 |
+
use_cache (`bool`, *optional*):
|
643 |
+
If set to `True`, the last state is returned and can be used to quickly generate the next logits.
|
644 |
+
output_attentions (`bool`, *optional*):
|
645 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
646 |
+
tensors for more detail.
|
647 |
+
output_hidden_states (`bool`, *optional*):
|
648 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
649 |
+
more detail.
|
650 |
+
return_dict (`bool`, *optional*):
|
651 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
652 |
+
"""
|
653 |
+
|
654 |
+
|
655 |
+
@add_start_docstrings(
|
656 |
+
"The bare RWKV7 Model transformer outputting raw hidden-states without any specific head on top.",
|
657 |
+
RWKV7_START_DOCSTRING,
|
658 |
+
)
|
659 |
+
class Rwkv7Model(Rwkv7PreTrainedModel):
|
660 |
+
def __init__(self, config):
|
661 |
+
super().__init__(config)
|
662 |
+
|
663 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
664 |
+
self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
665 |
+
self.blocks = nn.ModuleList([Rwkv7Block(config, layer_id=idx) for idx in range(config.num_hidden_layers)])
|
666 |
+
self.ln_out = nn.LayerNorm(config.hidden_size)
|
667 |
+
|
668 |
+
self.gradient_checkpointing = False
|
669 |
+
|
670 |
+
# Initialize weights and apply final processing
|
671 |
+
self.post_init()
|
672 |
+
|
673 |
+
def get_input_embeddings(self):
|
674 |
+
return self.embeddings
|
675 |
+
|
676 |
+
def set_input_embeddings(self, new_embeddings):
|
677 |
+
self.embeddings = new_embeddings
|
678 |
+
|
679 |
+
@add_start_docstrings_to_model_forward(RWKV7_INPUTS_DOCSTRING)
|
680 |
+
@add_code_sample_docstrings(
|
681 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
682 |
+
output_type=Rwkv7Output,
|
683 |
+
config_class=_CONFIG_FOR_DOC,
|
684 |
+
)
|
685 |
+
def forward(
|
686 |
+
self,
|
687 |
+
input_ids: Optional[torch.LongTensor] = None,
|
688 |
+
attention_mask: Optional[torch.LongTensor] = None, # noqa
|
689 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
690 |
+
state: Optional[List[torch.FloatTensor]] = None,
|
691 |
+
use_cache: Optional[bool] = None,
|
692 |
+
output_attentions: Optional[bool] = None,
|
693 |
+
output_hidden_states: Optional[bool] = None,
|
694 |
+
return_dict: Optional[bool] = None,
|
695 |
+
) -> Union[Tuple, Rwkv7Output]:
|
696 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
697 |
+
output_hidden_states = (
|
698 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
699 |
+
)
|
700 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
701 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
702 |
+
|
703 |
+
if input_ids is not None and inputs_embeds is not None:
|
704 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
705 |
+
elif input_ids is None and inputs_embeds is None:
|
706 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
707 |
+
|
708 |
+
if inputs_embeds is None:
|
709 |
+
inputs_embeds = self.embeddings(input_ids)
|
710 |
+
|
711 |
+
if state is None:
|
712 |
+
state = []
|
713 |
+
head_size = self.config.head_size
|
714 |
+
num_heads = self.config.attention_hidden_size // head_size
|
715 |
+
state_attn_x = torch.zeros(
|
716 |
+
(self.config.num_hidden_layers, inputs_embeds.size(0), self.config.hidden_size),
|
717 |
+
dtype=inputs_embeds.dtype,
|
718 |
+
requires_grad=False,
|
719 |
+
device=inputs_embeds.device,
|
720 |
+
).contiguous()
|
721 |
+
state_attn_vk = torch.zeros(
|
722 |
+
(
|
723 |
+
self.config.num_hidden_layers,
|
724 |
+
inputs_embeds.size(0),
|
725 |
+
num_heads,
|
726 |
+
head_size,
|
727 |
+
head_size,
|
728 |
+
),
|
729 |
+
dtype=torch.float32,
|
730 |
+
requires_grad=False,
|
731 |
+
device=inputs_embeds.device,
|
732 |
+
).contiguous()
|
733 |
+
state_ffn_x = torch.zeros(
|
734 |
+
(self.config.num_hidden_layers, inputs_embeds.size(0), self.config.hidden_size),
|
735 |
+
dtype=inputs_embeds.dtype,
|
736 |
+
requires_grad=False,
|
737 |
+
device=inputs_embeds.device,
|
738 |
+
).contiguous()
|
739 |
+
state.append(state_attn_x)
|
740 |
+
state.append(state_attn_vk)
|
741 |
+
state.append(state_ffn_x)
|
742 |
+
|
743 |
+
seq_mode = inputs_embeds.shape[1] > 1
|
744 |
+
hidden_states = self.pre_ln(inputs_embeds)
|
745 |
+
v_first = None
|
746 |
+
|
747 |
+
all_self_attentions = () if output_attentions else None
|
748 |
+
all_hidden_states = () if output_hidden_states else None
|
749 |
+
for idx, block in enumerate(self.blocks):
|
750 |
+
hidden_states, state, v_first, attentions = block(
|
751 |
+
hidden_states, state=state, v_first=v_first, use_cache=use_cache, output_attentions=output_attentions, seq_mode=seq_mode
|
752 |
+
)
|
753 |
+
|
754 |
+
if output_hidden_states:
|
755 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
756 |
+
|
757 |
+
if output_attentions:
|
758 |
+
all_self_attentions = all_self_attentions + (attentions,)
|
759 |
+
|
760 |
+
hidden_states = self.ln_out(hidden_states)
|
761 |
+
|
762 |
+
if output_hidden_states:
|
763 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
764 |
+
|
765 |
+
if not return_dict:
|
766 |
+
return (hidden_states, state, all_hidden_states, all_self_attentions)
|
767 |
+
|
768 |
+
return Rwkv7Output(
|
769 |
+
last_hidden_state=hidden_states,
|
770 |
+
state=state,
|
771 |
+
hidden_states=all_hidden_states, # None
|
772 |
+
attentions=all_self_attentions, # None
|
773 |
+
)
|
774 |
+
|
775 |
+
# copied from HuggingFace https://github.com/huggingface/transformers/blob/main/src/transformers/models/rwkv/modeling_rwkv.py
|
776 |
+
@add_start_docstrings(
|
777 |
+
"""
|
778 |
+
The RWKV7 Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
779 |
+
embeddings).
|
780 |
+
""",
|
781 |
+
RWKV7_START_DOCSTRING,
|
782 |
+
)
|
783 |
+
class Rwkv7ForCausalLM(Rwkv7PreTrainedModel, GenerationMixin):
|
784 |
+
_tied_weights_keys = ["head.weight"]
|
785 |
+
|
786 |
+
def __init__(self, config):
|
787 |
+
super().__init__(config)
|
788 |
+
self.model = Rwkv7Model(config)
|
789 |
+
self.head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
790 |
+
|
791 |
+
# Initialize weights and apply final processing
|
792 |
+
self.post_init()
|
793 |
+
|
794 |
+
def get_output_embeddings(self):
|
795 |
+
return self.head
|
796 |
+
|
797 |
+
def set_output_embeddings(self, new_embeddings):
|
798 |
+
self.head = new_embeddings
|
799 |
+
|
800 |
+
def prepare_inputs_for_generation(self, input_ids, state=None, inputs_embeds=None, **kwargs):
|
801 |
+
# only last token for inputs_ids if the state is passed along.
|
802 |
+
if state is not None:
|
803 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
804 |
+
|
805 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
806 |
+
if inputs_embeds is not None and state is None:
|
807 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
808 |
+
else:
|
809 |
+
model_inputs = {"input_ids": input_ids}
|
810 |
+
|
811 |
+
model_inputs["state"] = state
|
812 |
+
return model_inputs
|
813 |
+
|
814 |
+
@add_start_docstrings_to_model_forward(RWKV7_INPUTS_DOCSTRING)
|
815 |
+
@add_code_sample_docstrings(
|
816 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
817 |
+
output_type=Rwkv7CausalLMOutput,
|
818 |
+
config_class=_CONFIG_FOR_DOC,
|
819 |
+
)
|
820 |
+
def forward(
|
821 |
+
self,
|
822 |
+
input_ids: Optional[torch.LongTensor] = None,
|
823 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
824 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
825 |
+
state: Optional[List[torch.FloatTensor]] = None,
|
826 |
+
labels: Optional[torch.LongTensor] = None,
|
827 |
+
use_cache: Optional[bool] = None,
|
828 |
+
output_attentions: Optional[bool] = None,
|
829 |
+
output_hidden_states: Optional[bool] = None,
|
830 |
+
return_dict: Optional[bool] = None,
|
831 |
+
) -> Union[Tuple, Rwkv7CausalLMOutput]:
|
832 |
+
r"""
|
833 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
834 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
835 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
836 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
837 |
+
"""
|
838 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
839 |
+
|
840 |
+
outputs = self.model(
|
841 |
+
input_ids,
|
842 |
+
inputs_embeds=inputs_embeds,
|
843 |
+
state=state,
|
844 |
+
use_cache=use_cache,
|
845 |
+
output_attentions=output_attentions,
|
846 |
+
output_hidden_states=output_hidden_states,
|
847 |
+
return_dict=return_dict,
|
848 |
+
)
|
849 |
+
hidden_states = outputs[0]
|
850 |
+
|
851 |
+
logits = self.head(hidden_states)
|
852 |
+
|
853 |
+
loss = None
|
854 |
+
if labels is not None:
|
855 |
+
# move labels to correct device to enable model parallelism
|
856 |
+
labels = labels.to(logits.device)
|
857 |
+
# Shift so that tokens < n predict n
|
858 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
859 |
+
shift_labels = labels[..., 1:].contiguous()
|
860 |
+
# Flatten the tokens
|
861 |
+
loss_fct = CrossEntropyLoss()
|
862 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
863 |
+
|
864 |
+
if not return_dict:
|
865 |
+
output = (logits,) + outputs[1:]
|
866 |
+
return ((loss,) + output) if loss is not None else output
|
867 |
+
|
868 |
+
return Rwkv7CausalLMOutput(
|
869 |
+
loss=loss,
|
870 |
+
logits=logits,
|
871 |
+
state=outputs.state,
|
872 |
+
hidden_states=outputs.hidden_states,
|
873 |
+
attentions=outputs.attentions,
|
874 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<|padding|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"50254": {
|
23 |
+
"content": " ",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"50255": {
|
31 |
+
"content": " ",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": false
|
37 |
+
},
|
38 |
+
"50256": {
|
39 |
+
"content": " ",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": true,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": false
|
45 |
+
},
|
46 |
+
"50257": {
|
47 |
+
"content": " ",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": true,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": false
|
53 |
+
},
|
54 |
+
"50258": {
|
55 |
+
"content": " ",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": true,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"50259": {
|
63 |
+
"content": " ",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": true,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"50260": {
|
71 |
+
"content": " ",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": true,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"50261": {
|
79 |
+
"content": " ",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": true,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"50262": {
|
87 |
+
"content": " ",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": true,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"50263": {
|
95 |
+
"content": " ",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": true,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": false
|
101 |
+
},
|
102 |
+
"50264": {
|
103 |
+
"content": " ",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": true,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": false
|
109 |
+
},
|
110 |
+
"50265": {
|
111 |
+
"content": " ",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": true,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": false
|
117 |
+
},
|
118 |
+
"50266": {
|
119 |
+
"content": " ",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": true,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"50267": {
|
127 |
+
"content": " ",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": true,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"50268": {
|
135 |
+
"content": " ",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": true,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"50269": {
|
143 |
+
"content": " ",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": true,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"50270": {
|
151 |
+
"content": " ",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": true,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"50271": {
|
159 |
+
"content": " ",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": true,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"50272": {
|
167 |
+
"content": " ",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": true,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"50273": {
|
175 |
+
"content": " ",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": true,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
},
|
182 |
+
"50274": {
|
183 |
+
"content": " ",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": true,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": false
|
189 |
+
},
|
190 |
+
"50275": {
|
191 |
+
"content": " ",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": true,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": false
|
197 |
+
},
|
198 |
+
"50276": {
|
199 |
+
"content": " ",
|
200 |
+
"lstrip": false,
|
201 |
+
"normalized": true,
|
202 |
+
"rstrip": false,
|
203 |
+
"single_word": false,
|
204 |
+
"special": false
|
205 |
+
}
|
206 |
+
},
|
207 |
+
"bos_token": "<|endoftext|>",
|
208 |
+
"clean_up_tokenization_spaces": false,
|
209 |
+
"eos_token": "<|endoftext|>",
|
210 |
+
"model_max_length": 1000000000000000019884624838656,
|
211 |
+
"pad_token": null,
|
212 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
213 |
+
"unk_token": "<|endoftext|>"
|
214 |
+
}
|