|
--- |
|
license: mit |
|
datasets: |
|
- mlabonne/guanaco-llama2-1k |
|
language: |
|
- en |
|
base_model: |
|
- NousResearch/Llama-2-7b-chat-hf |
|
pipeline_tag: text-generation |
|
tags: |
|
- llama |
|
- causal-lm |
|
- text-generation |
|
- fine-tuned |
|
library_name: adapter-transformers |
|
--- |
|
|
|
|
|
mlabonne/guanaco-llama2-1k |
|
language: |
|
en |
|
base_model: NousResearch/Llama-2-7b-chat-hf |
|
pipeline_tag: text-generation |
|
tags: |
|
llama |
|
causal-lm |
|
text-generation |
|
fine-tuned |
|
|
|
|
|
Fine-tuned LLaMA Model |
|
This repository contains a fine-tuned version of the LLaMA model, optimized for enhanced text generation capabilities. |
|
Model Description |
|
|
|
Model Architecture: LLaMA (Large Language Model Meta AI) |
|
Base Model: NousResearch/Llama-2-7b-chat-hf |
|
Training Type: Fine-tuning |
|
Language(s): English |
|
License: MIT |
|
|
|
Intended Uses |
|
This model is designed for: |
|
|
|
Text generation |
|
Conversation completion |
|
Natural language understanding tasks |
|
|
|
Training and Evaluation |
|
The model was fine-tuned on mlabonne/guanaco-llama2-1k dataset. |
|
|
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
# Load model and tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("Smruti612/Llama-2-7b-chat-finetune_revise_smart") |
|
model = AutoModelForCausalLM.from_pretrained("Smruti612/Llama-2-7b-chat-finetune_revise_smart") |
|
|
|
# Example usage |
|
text = "Your input text here" |
|
inputs = tokenizer(text, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_length=100) |
|
result = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(result) |
|
|
|
Model Details |
|
|
|
Base Model: Llama-2-7b-chat-hf |
|
Training Dataset: guanaco-llama2-1k |
|
|
|
@misc{Smruti612/Llama-2-7b-chat-finetune_revise_smart, |
|
author = {Smruti Sonekar}, |
|
title = {Fine-tuned LLaMA Model}, |
|
year = {2024}, |
|
publisher = {Hugging Face}, |
|
journal = {Hugging Face Model Hub}, |
|
} |
|
|
|
Limitations |
|
|
|
Model outputs may occasionally be inaccurate or contain biases |
|
Performance may vary depending on the specific use case |
|
Limited by context window size |
|
|
|
Acknowledgments |
|
This model builds upon the LLaMA architecture developed by Meta AI. We acknowledge their contribution to the field of large language models. |