File size: 40,434 Bytes
f7108c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 |
# coding=utf-8
# Copyright 2024 The GTE Team Authors and Alibaba Group.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
ModelOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
try:
import xformers.ops as xops
except ImportError as e:
xops = None
from .configuration_hf_alibaba_nlp_gte import GteConfig
logger = logging.get_logger(__name__)
# Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
# Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
class IndexFirstAxis(torch.autograd.Function):
@staticmethod
def forward(ctx, input, indices):
ctx.save_for_backward(indices)
assert input.ndim >= 2
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
second_dim = other_shape.numel()
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
# return input[indices]
# return torch.gather(
# rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
# ).reshape(-1, *other_shape)
return torch.gather(
input.view(ctx.first_axis_dim, second_dim),
0,
indices.unsqueeze(-1).expand(indices.size(0), second_dim)
).reshape(-1, *other_shape)
@staticmethod
def backward(ctx, grad_output):
(indices,) = ctx.saved_tensors
assert grad_output.ndim >= 2
other_shape = grad_output.shape[1:]
# grad_output = rearrange(grad_output, "b ... -> b (...)")
grad_output = grad_output.view(grad_output.size(0), other_shape.numel())
grad_input = torch.zeros(
[ctx.first_axis_dim, grad_output.shape[1]],
device=grad_output.device,
dtype=grad_output.dtype,
)
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
# grad_input[indices] = grad_output
# grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
grad_input.scatter_(
0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output
)
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
index_first_axis = IndexFirstAxis.apply
def unpad_input(hidden_states, attention_mask=None, indices=None):
"""
Arguments:
hidden_states: (batch, seqlen, ...)
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
Return:
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
"""
if indices is None:
assert attention_mask is not None
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
# so we write custom forward and backward to make it a bit faster.
hidden_states = hidden_states.view(-1, *hidden_states.shape[2:])
return index_first_axis(hidden_states, indices)
class IndexPutFirstAxis(torch.autograd.Function):
@staticmethod
def forward(
ctx,
values: torch.Tensor,
indices: torch.Tensor,
first_axis_dim
) -> torch.Tensor:
ctx.save_for_backward(indices)
assert indices.ndim == 1
assert values.ndim >= 2
output = torch.zeros(
first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
)
output[indices] = values
return output
@staticmethod
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
indices, = ctx.saved_tensors
grad_values = grad_output[indices]
return grad_values, None, None
index_put_first_axis = IndexPutFirstAxis.apply
def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor:
"""Add padding to sequences.
Arguments:
inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()`
batch: int batch_size
seqlen: int max sequence length
Returns:
inputs: (batch, seqlen, ...)
"""
output = index_put_first_axis(inputs, indices, batch * seqlen)
return output.view(batch, seqlen, *inputs.shape[1:])
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos, sin = cos.to(q.dtype), sin.to(q.dtype)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
)
class NTKScalingRotaryEmbedding(RotaryEmbedding):
"""RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """
def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None):
self.scaling_factor = scaling_factor
self.mixed_b = mixed_b
super().__init__(dim, max_position_embeddings, base, device)
max_position_embeddings = max_position_embeddings * self.scaling_factor
self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype())
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
if self.mixed_b is None:
inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim) # (6)
else:
a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b # (13)
lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp() # (12)
inv_freq = inv_freq / lambda_1_m # (10)
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
LAYER_NORM = {
'layer_norm': nn.LayerNorm,
'rms_norm': RMSNorm
}
class GteEmbeddings(nn.Module):
"""
Embedding and Unpadding.
"""
def __init__(self, config: GteConfig):
super().__init__()
self.padding_idx = config.pad_token_id
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=self.padding_idx
)
self.position_embedding_type = config.position_embedding_type
if self.position_embedding_type == 'absolute':
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
elif self.position_embedding_type == 'rope':
self._init_rope(config)
else:
raise ValueError
self.type_vocab_size = config.type_vocab_size
if self.type_vocab_size > 0:
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids is contiguous in memory and excluded when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings), persistent=False
)
def _init_rope(self, config):
kwargs = dict(
dim=int(config.hidden_size / config.num_attention_heads),
max_position_embeddings=config.max_position_embeddings,
base=config.rope_theta
)
if config.rope_scaling is None:
self.rotary_emb = RotaryEmbedding(**kwargs)
else:
kwargs.update(scaling_factor=config.rope_scaling["factor"])
scaling_type = config.rope_scaling["type"]
if scaling_type == 'ntk':
kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None))
self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs)
# elif scaling_type == "linear":
# self.rotary_emb = LinearScalingRotaryEmbedding(**kwargs)
# elif scaling_type == "dynamic":
# self.rotary_emb = DynamicNTKScalingRotaryEmbedding(**kwargs)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def forward(
self,
unpad_inputs: bool,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
length: Optional[List[int]] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]:
"""
"""
if inputs_embeds is None:
device, input_shape = input_ids.device, input_ids.shape
else:
device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2]
batch_size, seq_length = input_shape
# Set attention_mask if it's None
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if length is not None:
for i, l in enumerate(length):
attention_mask[i, l:] = 0
# Set attention_mask_bool for unpadding
if unpad_inputs:
attention_mask_bool = attention_mask.bool()
if length is None:
length = attention_mask.sum(-1).tolist()
# Get word embeddings
if inputs_embeds is None:
if unpad_inputs:
input_ids = input_ids[attention_mask_bool].unsqueeze(0)
inputs_embeds = self.word_embeddings(input_ids)
else:
if unpad_inputs:
inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0)
embeddings = inputs_embeds
# Set and unpad position_ids
if position_ids is None:
if seq_length > self.position_ids.size(0):
self.register_buffer(
"position_ids", torch.arange(seq_length, device=embeddings.device), persistent=False
)
if unpad_inputs:
# [1, cumsum_seq_len]
position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0)
else:
# [bs, seq_len]
position_ids = self.position_ids[:seq_length].expand(batch_size, -1)
elif unpad_inputs:
position_ids = position_ids[attention_mask_bool].unsqueeze(0) # [1, cumsum_seq_len]
# Compute rotary embedding
if self.position_embedding_type == 'rope':
rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length)
rope_cos = rope_cos[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
rope_sin = rope_sin[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
rope_embeds = rope_cos, rope_sin
else:
rope_embeds = None
if self.type_vocab_size > 0:
if token_type_ids is None:
token_type_ids = position_ids.mul(0)
else:
if self.type_vocab_size < 2:
token_type_ids.mul_(0)
if unpad_inputs:
token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = embeddings + token_type_embeddings
# BERT position
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings = embeddings + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings, attention_mask, rope_embeds, length
class GteAttention(nn.Module):
def __init__(self, config: GteConfig, pack_qkv=None, use_memory_efficient_attention=None):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.hidden_size = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
if pack_qkv is None:
pack_qkv = config.pack_qkv
self.pack_qkv = pack_qkv
if self.pack_qkv:
self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True)
else:
self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
if use_memory_efficient_attention is None:
use_memory_efficient_attention = self.config.use_memory_efficient_attention
self.use_memory_efficient_attention = use_memory_efficient_attention
self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
if self.use_memory_efficient_attention:
assert self.memory_efficient_attention is not None, 'please install xformers'
def forward(
self,
hidden_states: torch.Tensor,
attention_bias: torch.FloatTensor,
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
attention_scale: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
) -> Tuple[torch.Tensor, ...]:
shape_hd = (self.num_attention_heads, self.attention_head_size)
# qkv
if self.pack_qkv and qkv_inputs is None:
qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1)
else:
if qkv_inputs is None:
qkv_inputs = (hidden_states, hidden_states, hidden_states)
qkv_pack = [
getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv')
]
query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack]
if self.config.position_embedding_type == 'rope':
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds)
dtype = query_states.dtype
if self.config.logn_attention_scale and attention_scale is not None:
# https://kexue.fm/archives/8823
query_states = query_states * attention_scale.to(dtype)
if padding_inputs is not None:
query_states = pad_input(query_states.squeeze(), *padding_inputs)
key_states = pad_input(key_states.squeeze(), *padding_inputs)
value_states = pad_input(value_states.squeeze(), *padding_inputs)
if self.use_memory_efficient_attention:
assert self.memory_efficient_attention is not None, "xformers is not loaded"
assert output_attentions is False, "memory_efficient_attention do not output attentions"
assert head_mask is None, "Not support yet"
attention_probs = None
if torch.is_tensor(attention_bias):
attention_bias = attention_bias.to(dtype)
context_layer = self.memory_efficient_attention(
query_states,
key_states,
value_states,
attn_bias=attention_bias,
p=self.dropout.p
)
else:
if output_attentions and isinstance(self, GteSdpaAttention):
raise RuntimeError("SDPA do not output attentions")
context_layer, attention_probs = self._attention(
query_states, key_states, value_states, attention_bias, head_mask
)
if padding_inputs is not None:
context_layer = unpad_input(context_layer, indices=padding_inputs[0])
gte_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(gte_context_layer_shape)
# output proj
attn_output = self.o_proj(context_layer)
# add attentions if we output them
outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
return outputs
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
"""
Args:
q/k/v: (B, L, n_head, head_dim),
Returns:
attn_output: (B L, n_head, head_dim)
"""
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_bias is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_bias
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
if self.dropout.p > 0:
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_states)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
return context_layer, attention_probs
class GteSdpaAttention(GteAttention):
"""
Gte attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`GteAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
def __init__(self, config: GteConfig, **kwargs):
super().__init__(config, **kwargs)
# torch.backends.cuda.enable_mem_efficient_sdp(False)
# logger.warning(
# "Disable memory efficient attention kernel for `GteSdpaAttention`, you can set "
# "`use_memory_efficient_attention=True` if it expected to use."
# )
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states.transpose(1, 2),
key_states.transpose(1, 2),
value_states.transpose(1, 2),
attn_mask=attention_bias,
dropout_p=self.dropout.p if self.training else 0.0,
)
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
return attn_output, None
GTE_ATTENTION_CLASSES = {
"eager": GteAttention,
# "flash_attention_2": , # TODO
"sdpa": GteSdpaAttention,
}
class GteGatedMLP(nn.Module):
"""
GLU Variants Improve Transformer.
"""
def __init__(self, config: GteConfig):
super().__init__()
self.intermediate_size = config.intermediate_size
self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True)
self.act_fn = ACT2FN[config.hidden_act]
if config.hidden_dropout_prob > 0:
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
else:
self.hidden_dropout = None
def forward(self, hidden_states):
up_gate = self.up_gate_proj(hidden_states)
up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1)
gate = self.act_fn(gate)
gated_states = gate * up_states
if self.hidden_dropout is not None:
gated_states = self.hidden_dropout(gated_states)
down_states = self.down_proj(gated_states)
return down_states
class GteLayer(nn.Module):
def __init__(
self,
config: GteConfig,
pack_qkv=None,
use_memory_efficient_attention=None,
attn_implementation=None
):
super().__init__()
if attn_implementation is None:
attn_implementation = config._attn_implementation
if use_memory_efficient_attention is None:
use_memory_efficient_attention = config.use_memory_efficient_attention
if use_memory_efficient_attention:
if attn_implementation != 'eager':
logger.warning_once(f"Override {attn_implementation=} to 'eager' as {use_memory_efficient_attention=}")
attn_implementation = 'eager' # Since it will be SDPA by default for torch>=2.1.1
self.attention = GTE_ATTENTION_CLASSES[attn_implementation](
config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
)
self.mlp = GteGatedMLP(config)
ln_class = LAYER_NORM[config.layer_norm_type]
self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
if config.hidden_dropout_prob > 0:
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
else:
self.hidden_dropout = None
def forward(
self,
hidden_states: torch.Tensor,
attention_bias: torch.FloatTensor,
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
attention_scale: Optional[torch.FloatTensor] = None,
subset_indices: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
) -> Tuple[torch.Tensor, ...]:
# Multi head self attention
residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
attention_outputs = self.attention(
hidden_states,
attention_bias,
rope_embeds,
padding_inputs,
attention_scale,
head_mask,
output_attentions=output_attentions,
qkv_inputs=qkv_inputs,
)
hidden_states = attention_outputs[0]
if self.hidden_dropout is not None:
hidden_states = self.hidden_dropout(hidden_states)
hidden_states = residual + hidden_states
# In pretraining, after the attention of last layer, we only need the masked tokens.
if subset_indices is not None:
hidden_states = hidden_states[subset_indices]
hidden_states = self.attn_ln(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.mlp(hidden_states)
if self.hidden_dropout is not None:
hidden_states = self.hidden_dropout(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.mlp_ln(hidden_states)
# add self attentions if we output attention weights
outputs = (hidden_states,) + attention_outputs[1:]
return outputs
class GteEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([GteLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_bias: Optional[torch.FloatTensor] = None,
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
attention_scale: Optional[torch.FloatTensor] = None,
subset_indices: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if i >= len(self.layer) - 1:
layer_subset_indices = subset_indices
else:
layer_subset_indices = None
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_bias,
rope_embeds,
padding_inputs,
attention_scale,
layer_subset_indices,
layer_head_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_bias,
rope_embeds,
padding_inputs,
attention_scale,
layer_subset_indices,
layer_head_mask,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
all_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Gte
class GtePooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class GtePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GteConfig
base_model_prefix = "gte"
supports_gradient_checkpointing = True
_supports_sdpa = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class GteModel(GtePreTrainedModel):
"""
The bare Gte Model transformer outputting raw hidden-states without any specific head on top.
"""
def __init__(self, config: GteConfig, add_pooling_layer=False):
super().__init__(config)
self.config = config
self.embeddings = GteEmbeddings(config)
self.encoder = GteEncoder(config)
self.pooler = GtePooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
length: Optional[List[int]] = None,
subset_indices: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
unpad_inputs: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
r"""
length (`list` of length `batch_size`, *optional*):
If is `None`, return padded `last_hidden_state`.
subset_indices ():
pass
unpad_inputs (`bool`, *optional*):
pass
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs
output_padded = length is None
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
# TODO: not used
# # Prepare head mask if needed
# # 1.0 in head_mask indicate we keep the head
# # attention_probs has shape bsz x n_heads x N x N
# # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
# head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
# Get embeddings, may unpad them
(embedding_output, attention_mask, rope_embeds, length) = self.embeddings(
unpad_inputs,
input_ids=input_ids,
attention_mask=attention_mask,
length=length,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds
)
batch_size, seq_length = input_shape
if unpad_inputs and self.config.use_memory_efficient_attention:
attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length)
else:
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
attention_bias = self.get_extended_attention_mask(attention_mask, input_shape)
if self.config.use_memory_efficient_attention:
# Invalid shape for attention bias: torch.Size([48, 1, 1, 512]) (expected (48, 12, 512, 512))
attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)
padding_inputs = None
if unpad_inputs and (output_padded or not self.config.use_memory_efficient_attention):
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
if not self.config.use_memory_efficient_attention:
padding_inputs = (indices, *input_shape)
attention_scale = None
if self.config.logn_attention_scale:
logger.warning_once("TODO: logn_attention_scale")
# # attention scale log_512(input_len)
# attention_scale = attention_mask.sum(1).log() / torch.tensor(self.config.max_position_embeddings).log()
# # inference-time logn scale need clip 1
# if self.config.logn_attention_clip1:
# attention_scale.clip_(1)
# attention_scale = attention_scale[:, None, None, None]
# else:
# attention_scale = None
encoder_outputs = self.encoder(
embedding_output,
attention_bias=attention_bias,
rope_embeds=rope_embeds,
padding_inputs=padding_inputs,
attention_scale=attention_scale,
subset_indices=subset_indices,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if unpad_inputs and output_padded:
sequence_output = pad_input(
sequence_output.squeeze(), indices, batch_size, seq_length
)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|