File size: 40,434 Bytes
f7108c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
# coding=utf-8
# Copyright 2024 The GTE Team Authors and Alibaba Group.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn

from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPooling,
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    ModelOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

try:
    import xformers.ops as xops
except ImportError as e:
    xops = None

from .configuration_hf_alibaba_nlp_gte import GteConfig


logger = logging.get_logger(__name__)


# Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
# Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
class IndexFirstAxis(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input, indices):
        ctx.save_for_backward(indices)
        assert input.ndim >= 2
        ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
        second_dim = other_shape.numel()
        # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
        # return input[indices]
        # return torch.gather(
        #     rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
        # ).reshape(-1, *other_shape)
        return torch.gather(
            input.view(ctx.first_axis_dim, second_dim),
            0,
            indices.unsqueeze(-1).expand(indices.size(0), second_dim)
        ).reshape(-1, *other_shape)

    @staticmethod
    def backward(ctx, grad_output):
        (indices,) = ctx.saved_tensors
        assert grad_output.ndim >= 2
        other_shape = grad_output.shape[1:]
        # grad_output = rearrange(grad_output, "b ... -> b (...)")
        grad_output = grad_output.view(grad_output.size(0), other_shape.numel())
        grad_input = torch.zeros(
            [ctx.first_axis_dim, grad_output.shape[1]],
            device=grad_output.device,
            dtype=grad_output.dtype,
        )
        # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
        # grad_input[indices] = grad_output
        # grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
        grad_input.scatter_(
            0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output
        )
        return grad_input.reshape(ctx.first_axis_dim, *other_shape), None


index_first_axis = IndexFirstAxis.apply


def unpad_input(hidden_states, attention_mask=None, indices=None):
    """
    Arguments:
        hidden_states: (batch, seqlen, ...)
        attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
        indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
    Return:
        hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
    """
    if indices is None:
        assert attention_mask is not None
        indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()

    # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
    # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
    # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
    # index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
    # so we write custom forward and backward to make it a bit faster.
    hidden_states = hidden_states.view(-1, *hidden_states.shape[2:])
    return index_first_axis(hidden_states, indices)


class IndexPutFirstAxis(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx,
        values: torch.Tensor,
        indices: torch.Tensor,
        first_axis_dim
    ) -> torch.Tensor:
        ctx.save_for_backward(indices)
        assert indices.ndim == 1
        assert values.ndim >= 2
        output = torch.zeros(
            first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
        )
        output[indices] = values
        return output

    @staticmethod
    def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
        indices, = ctx.saved_tensors
        grad_values = grad_output[indices]
        return grad_values, None, None


index_put_first_axis = IndexPutFirstAxis.apply


def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor:
    """Add padding to sequences.

    Arguments:
        inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
        indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()`
        batch: int batch_size
        seqlen: int max sequence length

    Returns:
        inputs: (batch, seqlen, ...)
    """
    output = index_put_first_axis(inputs, indices, batch * seqlen)
    return output.view(batch, seqlen, *inputs.shape[1:])


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos, sin = cos.to(q.dtype), sin.to(q.dtype)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class RotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)

        return (
            self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
            self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
        )


class NTKScalingRotaryEmbedding(RotaryEmbedding):
    """RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """

    def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None):
        self.scaling_factor = scaling_factor
        self.mixed_b = mixed_b
        super().__init__(dim, max_position_embeddings, base, device)
        max_position_embeddings = max_position_embeddings * self.scaling_factor
        self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype())

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len

        if seq_len > self.max_position_embeddings:
            base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))

            if self.mixed_b is None:
                inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim)  # (6)
            else:
                a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b  # (13)
                lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp()  # (12)
                inv_freq = inv_freq / lambda_1_m  # (10)

            self.register_buffer("inv_freq", inv_freq, persistent=False)

        t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)


class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        RMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


LAYER_NORM = {
    'layer_norm': nn.LayerNorm,
    'rms_norm': RMSNorm
}


class GteEmbeddings(nn.Module):
    """
    Embedding and Unpadding.
    """

    def __init__(self, config: GteConfig):
        super().__init__()
        self.padding_idx = config.pad_token_id
        self.word_embeddings = nn.Embedding(
            config.vocab_size, config.hidden_size, padding_idx=self.padding_idx
        )

        self.position_embedding_type = config.position_embedding_type
        if self.position_embedding_type == 'absolute':
            self.position_embeddings = nn.Embedding(
                config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
            )
        elif self.position_embedding_type == 'rope':
            self._init_rope(config)
        else:
            raise ValueError

        self.type_vocab_size = config.type_vocab_size
        if self.type_vocab_size > 0:
            self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        # position_ids is contiguous in memory and excluded when serialized
        self.register_buffer(
            "position_ids", torch.arange(config.max_position_embeddings), persistent=False
        )

    def _init_rope(self, config):
        kwargs = dict(
            dim=int(config.hidden_size / config.num_attention_heads),
            max_position_embeddings=config.max_position_embeddings,
            base=config.rope_theta
        )
        if config.rope_scaling is None:
            self.rotary_emb = RotaryEmbedding(**kwargs)
        else:
            kwargs.update(scaling_factor=config.rope_scaling["factor"])
            scaling_type = config.rope_scaling["type"]
            if scaling_type == 'ntk':
                kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None))
                self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs)
            # elif scaling_type == "linear":
            #     self.rotary_emb = LinearScalingRotaryEmbedding(**kwargs)
            # elif scaling_type == "dynamic":
            #     self.rotary_emb = DynamicNTKScalingRotaryEmbedding(**kwargs)
            else:
                raise ValueError(f"Unknown RoPE scaling type {scaling_type}")

    def forward(
        self,
        unpad_inputs: bool,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        length: Optional[List[int]] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]:
        """
        """
        if inputs_embeds is None:
            device, input_shape = input_ids.device, input_ids.shape
        else:
            device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2]
        batch_size, seq_length = input_shape

        # Set attention_mask if it's None
        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
            if length is not None:
                for i, l in enumerate(length):
                    attention_mask[i, l:] = 0

        # Set attention_mask_bool for unpadding
        if unpad_inputs:
            attention_mask_bool = attention_mask.bool()
            if length is None:
                length = attention_mask.sum(-1).tolist()

        # Get word embeddings
        if inputs_embeds is None:
            if unpad_inputs:
                input_ids = input_ids[attention_mask_bool].unsqueeze(0)
            inputs_embeds = self.word_embeddings(input_ids)
        else:
            if unpad_inputs:
                inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0)
        embeddings = inputs_embeds

        # Set and unpad position_ids
        if position_ids is None:
            if seq_length > self.position_ids.size(0):
                self.register_buffer(
                    "position_ids", torch.arange(seq_length, device=embeddings.device), persistent=False
                )
            if unpad_inputs:
                # [1, cumsum_seq_len]
                position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0)
            else:
                # [bs, seq_len]
                position_ids = self.position_ids[:seq_length].expand(batch_size, -1)
        elif unpad_inputs:
            position_ids = position_ids[attention_mask_bool].unsqueeze(0)  # [1, cumsum_seq_len]

        # Compute rotary embedding
        if self.position_embedding_type == 'rope':
            rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length)
            rope_cos = rope_cos[position_ids].unsqueeze(2)  # [bs, seq_len, 1, dim]
            rope_sin = rope_sin[position_ids].unsqueeze(2)  # [bs, seq_len, 1, dim]
            rope_embeds = rope_cos, rope_sin
        else:
            rope_embeds = None

        if self.type_vocab_size > 0:
            if token_type_ids is None:
                token_type_ids = position_ids.mul(0)
            else:
                if self.type_vocab_size < 2:
                    token_type_ids.mul_(0)
                if unpad_inputs:
                    token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0)

            token_type_embeddings = self.token_type_embeddings(token_type_ids)
            embeddings = embeddings + token_type_embeddings

        # BERT position
        if self.position_embedding_type == "absolute":
            position_embeddings = self.position_embeddings(position_ids)
            embeddings = embeddings + position_embeddings

        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)

        return embeddings, attention_mask, rope_embeds, length


class GteAttention(nn.Module):
    def __init__(self, config: GteConfig, pack_qkv=None, use_memory_efficient_attention=None):
        super().__init__()
        self.config = config
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )

        self.hidden_size = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        if pack_qkv is None:
            pack_qkv = config.pack_qkv
        self.pack_qkv = pack_qkv

        if self.pack_qkv:
            self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True)
        else:
            self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
            self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
            self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)

        if use_memory_efficient_attention is None:
            use_memory_efficient_attention = self.config.use_memory_efficient_attention
        self.use_memory_efficient_attention = use_memory_efficient_attention
        self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
        if self.use_memory_efficient_attention:
            assert self.memory_efficient_attention is not None, 'please install xformers'

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_bias: torch.FloatTensor,
        rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
        padding_inputs: Optional[Tuple] = None,  # indices, batch, seqlen
        attention_scale: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
        qkv_inputs: Optional[Tuple] = None,  # For RetroMAE
    ) -> Tuple[torch.Tensor, ...]:
        shape_hd = (self.num_attention_heads, self.attention_head_size)
        # qkv
        if self.pack_qkv and qkv_inputs is None:
            qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1)
        else:
            if qkv_inputs is None:
                qkv_inputs = (hidden_states, hidden_states, hidden_states)
            qkv_pack = [
                getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv')
            ]
        query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack]

        if self.config.position_embedding_type == 'rope':
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds)

        dtype = query_states.dtype

        if self.config.logn_attention_scale and attention_scale is not None:
            # https://kexue.fm/archives/8823
            query_states = query_states * attention_scale.to(dtype)

        if padding_inputs is not None:
            query_states = pad_input(query_states.squeeze(), *padding_inputs)
            key_states = pad_input(key_states.squeeze(), *padding_inputs)
            value_states = pad_input(value_states.squeeze(), *padding_inputs)

        if self.use_memory_efficient_attention:
            assert self.memory_efficient_attention is not None, "xformers is not loaded"
            assert output_attentions is False, "memory_efficient_attention do not output attentions"
            assert head_mask is None, "Not support yet"
            attention_probs = None
            if torch.is_tensor(attention_bias):
                attention_bias = attention_bias.to(dtype)
            context_layer = self.memory_efficient_attention(
                query_states,
                key_states,
                value_states,
                attn_bias=attention_bias,
                p=self.dropout.p
            )
        else:
            if output_attentions and isinstance(self, GteSdpaAttention):
                raise RuntimeError("SDPA do not output attentions")
            context_layer, attention_probs = self._attention(
                query_states, key_states, value_states, attention_bias, head_mask
            )

        if padding_inputs is not None:
            context_layer = unpad_input(context_layer, indices=padding_inputs[0])

        gte_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(gte_context_layer_shape)

        # output proj
        attn_output = self.o_proj(context_layer)

        # add attentions if we output them
        outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
        return outputs

    def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
        """
        Args:
            q/k/v: (B, L, n_head, head_dim),
        Returns:
            attn_output: (B L, n_head, head_dim)
        """
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)
        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_bias is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_bias

        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        if self.dropout.p > 0:
            attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_states)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        return context_layer, attention_probs


class GteSdpaAttention(GteAttention):
    """
    Gte attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
    `GteAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
    SDPA API.
    """
    def __init__(self, config: GteConfig, **kwargs):
        super().__init__(config, **kwargs)
        # torch.backends.cuda.enable_mem_efficient_sdp(False)
        # logger.warning(
        #     "Disable memory efficient attention kernel for `GteSdpaAttention`, you can set "
        #     "`use_memory_efficient_attention=True` if it expected to use."
        # )

    def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states.transpose(1, 2),
            key_states.transpose(1, 2),
            value_states.transpose(1, 2),
            attn_mask=attention_bias,
            dropout_p=self.dropout.p if self.training else 0.0,
        )
        attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
        return attn_output, None


GTE_ATTENTION_CLASSES = {
    "eager": GteAttention,
    # "flash_attention_2": ,  # TODO
    "sdpa": GteSdpaAttention,
}


class GteGatedMLP(nn.Module):
    """
    GLU Variants Improve Transformer.
    """

    def __init__(self, config: GteConfig):
        super().__init__()
        self.intermediate_size = config.intermediate_size
        self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True)
        self.act_fn = ACT2FN[config.hidden_act]
        if config.hidden_dropout_prob > 0:
            self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
        else:
            self.hidden_dropout = None

    def forward(self, hidden_states):
        up_gate = self.up_gate_proj(hidden_states)
        up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1)
        gate = self.act_fn(gate)
        gated_states = gate * up_states
        if self.hidden_dropout is not None:
            gated_states = self.hidden_dropout(gated_states)
        down_states = self.down_proj(gated_states)
        return down_states


class GteLayer(nn.Module):
    def __init__(
        self,
        config: GteConfig,
        pack_qkv=None,
        use_memory_efficient_attention=None,
        attn_implementation=None
    ):
        super().__init__()
        if attn_implementation is None:
            attn_implementation = config._attn_implementation
        if use_memory_efficient_attention is None:
            use_memory_efficient_attention = config.use_memory_efficient_attention
        if use_memory_efficient_attention:
            if attn_implementation != 'eager':
                logger.warning_once(f"Override {attn_implementation=} to 'eager' as {use_memory_efficient_attention=}")
                attn_implementation = 'eager'  # Since it will be SDPA by default for torch>=2.1.1
        self.attention = GTE_ATTENTION_CLASSES[attn_implementation](
            config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
        )
        self.mlp = GteGatedMLP(config)

        ln_class = LAYER_NORM[config.layer_norm_type]
        self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
        self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)

        if config.hidden_dropout_prob > 0:
            self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
        else:
            self.hidden_dropout = None

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_bias: torch.FloatTensor,
        rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
        padding_inputs: Optional[Tuple] = None,  # indices, batch, seqlen
        attention_scale: Optional[torch.FloatTensor] = None,
        subset_indices: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
        qkv_inputs: Optional[Tuple] = None,  # For RetroMAE
    ) -> Tuple[torch.Tensor, ...]:
        # Multi head self attention
        residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
        attention_outputs = self.attention(
            hidden_states,
            attention_bias,
            rope_embeds,
            padding_inputs,
            attention_scale,
            head_mask,
            output_attentions=output_attentions,
            qkv_inputs=qkv_inputs,
        )
        hidden_states = attention_outputs[0]
        if self.hidden_dropout is not None:
            hidden_states = self.hidden_dropout(hidden_states)
        hidden_states = residual + hidden_states

        # In pretraining, after the attention of last layer, we only need the masked tokens.
        if subset_indices is not None:
            hidden_states = hidden_states[subset_indices]

        hidden_states = self.attn_ln(hidden_states)

        # Fully Connected
        residual = hidden_states
        hidden_states = self.mlp(hidden_states)
        if self.hidden_dropout is not None:
            hidden_states = self.hidden_dropout(hidden_states)
        hidden_states = residual + hidden_states
        hidden_states = self.mlp_ln(hidden_states)

        # add self attentions if we output attention weights
        outputs = (hidden_states,) + attention_outputs[1:]
        return outputs


class GteEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([GteLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_bias: Optional[torch.FloatTensor] = None,
        rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
        padding_inputs: Optional[Tuple] = None,  # indices, batch, seqlen
        attention_scale: Optional[torch.FloatTensor] = None,
        subset_indices: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        return_dict: Optional[bool] = True,
    ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if i >= len(self.layer) - 1:
                layer_subset_indices = subset_indices
            else:
                layer_subset_indices = None

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    hidden_states,
                    attention_bias,
                    rope_embeds,
                    padding_inputs,
                    attention_scale,
                    layer_subset_indices,
                    layer_head_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_bias,
                    rope_embeds,
                    padding_inputs,
                    attention_scale,
                    layer_subset_indices,
                    layer_head_mask,
                    output_attentions,
                )

            hidden_states = layer_outputs[0]
            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    all_hidden_states,
                    all_self_attentions,
                ]
                if v is not None
            )
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Gte
class GtePooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class GtePreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = GteConfig
    base_model_prefix = "gte"
    supports_gradient_checkpointing = True
    _supports_sdpa = True

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


class GteModel(GtePreTrainedModel):
    """
    The bare Gte Model transformer outputting raw hidden-states without any specific head on top.
    """

    def __init__(self, config: GteConfig, add_pooling_layer=False):
        super().__init__(config)
        self.config = config

        self.embeddings = GteEmbeddings(config)
        self.encoder = GteEncoder(config)

        self.pooler = GtePooler(config) if add_pooling_layer else None

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        length: Optional[List[int]] = None,
        subset_indices: Optional[torch.LongTensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        unpad_inputs: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
        r"""
        length  (`list` of length `batch_size`, *optional*):
            If is `None`, return padded `last_hidden_state`.
        subset_indices  ():
            pass
        unpad_inputs  (`bool`, *optional*):
            pass
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs
        output_padded = length is None

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        # TODO: not used
        # # Prepare head mask if needed
        # # 1.0 in head_mask indicate we keep the head
        # # attention_probs has shape bsz x n_heads x N x N
        # # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        # head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        # Get embeddings, may unpad them
        (embedding_output, attention_mask, rope_embeds, length) = self.embeddings(
            unpad_inputs,
            input_ids=input_ids,
            attention_mask=attention_mask,
            length=length,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds
        )

        batch_size, seq_length = input_shape
        if unpad_inputs and self.config.use_memory_efficient_attention:
            attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length)
        else:
            # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
            # ourselves in which case we just need to make it broadcastable to all heads.
            attention_bias = self.get_extended_attention_mask(attention_mask, input_shape)
            if self.config.use_memory_efficient_attention:
                # Invalid shape for attention bias: torch.Size([48, 1, 1, 512]) (expected (48, 12, 512, 512))
                attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)

        padding_inputs = None
        if unpad_inputs and (output_padded or not self.config.use_memory_efficient_attention):
            indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
            if not self.config.use_memory_efficient_attention:
                padding_inputs = (indices, *input_shape)

        attention_scale = None
        if self.config.logn_attention_scale:
            logger.warning_once("TODO: logn_attention_scale")
        #     # attention scale log_512(input_len)
        #     attention_scale = attention_mask.sum(1).log() / torch.tensor(self.config.max_position_embeddings).log()
        #     # inference-time logn scale need clip 1
        #     if self.config.logn_attention_clip1:
        #         attention_scale.clip_(1)
        #     attention_scale = attention_scale[:, None, None, None]
        # else:
        #     attention_scale = None

        encoder_outputs = self.encoder(
            embedding_output,
            attention_bias=attention_bias,
            rope_embeds=rope_embeds,
            padding_inputs=padding_inputs,
            attention_scale=attention_scale,
            subset_indices=subset_indices,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        if unpad_inputs and output_padded:
            sequence_output = pad_input(
                sequence_output.squeeze(), indices, batch_size, seq_length
            )

        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )