|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" GTE model configuration""" |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class GteConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`NewModel`] or a [`TFNewModel`]. It is used to |
|
instantiate a NEW model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the NEW |
|
[izhx/new-base-en](https://huggingface.co/izhx/new-base-en) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 30522): |
|
Vocabulary size of the NEW model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`NewModel`] or [`TFNewModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 512): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
type_vocab_size (`int`, *optional*, defaults to 2): |
|
The vocabulary size of the `token_type_ids` passed when calling [`NewModel`] or [`TFNewModel`]. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
position_embedding_type (`str`, *optional*, defaults to `"rope"`): |
|
Type of position embedding. Choose one of `"absolute"`, `"rope"`. |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling |
|
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is |
|
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update |
|
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how |
|
these scaling strategies behave: |
|
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an |
|
experimental feature, subject to breaking API changes in future versions. |
|
classifier_dropout (`float`, *optional*): |
|
The dropout ratio for the classification head. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import NewConfig, NewModel |
|
|
|
>>> # Initializing a NEW izhx/new-base-en style configuration |
|
>>> configuration = NewConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the izhx/new-base-en style configuration |
|
>>> model = NewModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "gte" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=30528, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.0, |
|
max_position_embeddings=2048, |
|
type_vocab_size=1, |
|
initializer_range=0.02, |
|
layer_norm_type='layer_norm', |
|
layer_norm_eps=1e-12, |
|
|
|
position_embedding_type="rope", |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
classifier_dropout=None, |
|
pack_qkv=True, |
|
unpad_inputs=False, |
|
use_memory_efficient_attention=False, |
|
logn_attention_scale=False, |
|
logn_attention_clip1=False, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.layer_norm_type = layer_norm_type |
|
self.layer_norm_eps = layer_norm_eps |
|
self.position_embedding_type = position_embedding_type |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.classifier_dropout = classifier_dropout |
|
|
|
self.pack_qkv = pack_qkv |
|
self.unpad_inputs = unpad_inputs |
|
self.use_memory_efficient_attention = use_memory_efficient_attention |
|
self.logn_attention_scale = logn_attention_scale |
|
self.logn_attention_clip1 = logn_attention_clip1 |