spacemanidol's picture
Update README.md
3b0645c verified
|
raw
history blame
68.8 kB
metadata
tags:
  - mteb
  - arctic
  - arctic-embed
model-index:
  - name: snowflake-arctic-embed-s
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 71.17910447761193
          - type: ap
            value: 33.15833652904991
          - type: f1
            value: 64.86214791591543
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 78.750325
          - type: ap
            value: 72.83242788470943
          - type: f1
            value: 78.63968044029453
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 38.264
          - type: f1
            value: 37.140269688532825
      - task:
          type: Retrieval
        dataset:
          type: mteb/arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
        metrics:
          - type: map_at_1
            value: 32.646
          - type: map_at_10
            value: 48.372
          - type: map_at_100
            value: 49.207
          - type: map_at_1000
            value: 49.214
          - type: map_at_3
            value: 43.611
          - type: map_at_5
            value: 46.601
          - type: mrr_at_1
            value: 33.144
          - type: mrr_at_10
            value: 48.557
          - type: mrr_at_100
            value: 49.385
          - type: mrr_at_1000
            value: 49.392
          - type: mrr_at_3
            value: 43.777
          - type: mrr_at_5
            value: 46.792
          - type: ndcg_at_1
            value: 32.646
          - type: ndcg_at_10
            value: 56.874
          - type: ndcg_at_100
            value: 60.307
          - type: ndcg_at_1000
            value: 60.465999999999994
          - type: ndcg_at_3
            value: 47.339999999999996
          - type: ndcg_at_5
            value: 52.685
          - type: precision_at_1
            value: 32.646
          - type: precision_at_10
            value: 8.378
          - type: precision_at_100
            value: 0.984
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 19.393
          - type: precision_at_5
            value: 14.210999999999999
          - type: recall_at_1
            value: 32.646
          - type: recall_at_10
            value: 83.784
          - type: recall_at_100
            value: 98.43499999999999
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 58.179
          - type: recall_at_5
            value: 71.053
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 44.94353025039141
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 35.870836103029156
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 61.149290266979236
          - type: mrr
            value: 73.8448093919008
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 87.055571064151
          - type: cos_sim_spearman
            value: 86.2652186235749
          - type: euclidean_pearson
            value: 85.82039272282503
          - type: euclidean_spearman
            value: 86.2652186235749
          - type: manhattan_pearson
            value: 85.95825392094812
          - type: manhattan_spearman
            value: 86.6742640885316
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 79.11688311688312
          - type: f1
            value: 78.28328901613885
      - task:
          type: Clustering
        dataset:
          type: jinaai/big-patent-clustering
          name: MTEB BigPatentClustering
          config: default
          split: test
          revision: 62d5330920bca426ce9d3c76ea914f15fc83e891
        metrics:
          - type: v_measure
            value: 19.147523589859325
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 35.68369864124274
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 30.474958792950872
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-android
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: f46a197baaae43b4f621051089b82a364682dfeb
        metrics:
          - type: map_at_1
            value: 33.183
          - type: map_at_10
            value: 43.989
          - type: map_at_100
            value: 45.389
          - type: map_at_1000
            value: 45.517
          - type: map_at_3
            value: 40.275
          - type: map_at_5
            value: 42.306
          - type: mrr_at_1
            value: 40.486
          - type: mrr_at_10
            value: 49.62
          - type: mrr_at_100
            value: 50.351
          - type: mrr_at_1000
            value: 50.393
          - type: mrr_at_3
            value: 46.805
          - type: mrr_at_5
            value: 48.429
          - type: ndcg_at_1
            value: 40.486
          - type: ndcg_at_10
            value: 50.249
          - type: ndcg_at_100
            value: 55.206
          - type: ndcg_at_1000
            value: 57.145
          - type: ndcg_at_3
            value: 44.852
          - type: ndcg_at_5
            value: 47.355000000000004
          - type: precision_at_1
            value: 40.486
          - type: precision_at_10
            value: 9.571
          - type: precision_at_100
            value: 1.4949999999999999
          - type: precision_at_1000
            value: 0.196
          - type: precision_at_3
            value: 21.173000000000002
          - type: precision_at_5
            value: 15.622
          - type: recall_at_1
            value: 33.183
          - type: recall_at_10
            value: 62.134
          - type: recall_at_100
            value: 82.73
          - type: recall_at_1000
            value: 94.93599999999999
          - type: recall_at_3
            value: 46.497
          - type: recall_at_5
            value: 53.199
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-english
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
        metrics:
          - type: map_at_1
            value: 32.862
          - type: map_at_10
            value: 42.439
          - type: map_at_100
            value: 43.736999999999995
          - type: map_at_1000
            value: 43.864
          - type: map_at_3
            value: 39.67
          - type: map_at_5
            value: 41.202
          - type: mrr_at_1
            value: 40.892
          - type: mrr_at_10
            value: 48.61
          - type: mrr_at_100
            value: 49.29
          - type: mrr_at_1000
            value: 49.332
          - type: mrr_at_3
            value: 46.688
          - type: mrr_at_5
            value: 47.803000000000004
          - type: ndcg_at_1
            value: 40.892
          - type: ndcg_at_10
            value: 47.797
          - type: ndcg_at_100
            value: 52.17699999999999
          - type: ndcg_at_1000
            value: 54.127
          - type: ndcg_at_3
            value: 44.189
          - type: ndcg_at_5
            value: 45.821
          - type: precision_at_1
            value: 40.892
          - type: precision_at_10
            value: 8.841000000000001
          - type: precision_at_100
            value: 1.419
          - type: precision_at_1000
            value: 0.188
          - type: precision_at_3
            value: 21.104
          - type: precision_at_5
            value: 14.777000000000001
          - type: recall_at_1
            value: 32.862
          - type: recall_at_10
            value: 56.352999999999994
          - type: recall_at_100
            value: 74.795
          - type: recall_at_1000
            value: 86.957
          - type: recall_at_3
            value: 45.269999999999996
          - type: recall_at_5
            value: 50.053000000000004
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gaming
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: 4885aa143210c98657558c04aaf3dc47cfb54340
        metrics:
          - type: map_at_1
            value: 42.998999999999995
          - type: map_at_10
            value: 54.745
          - type: map_at_100
            value: 55.650999999999996
          - type: map_at_1000
            value: 55.703
          - type: map_at_3
            value: 51.67
          - type: map_at_5
            value: 53.503
          - type: mrr_at_1
            value: 49.028
          - type: mrr_at_10
            value: 58.172000000000004
          - type: mrr_at_100
            value: 58.744
          - type: mrr_at_1000
            value: 58.769000000000005
          - type: mrr_at_3
            value: 55.977
          - type: mrr_at_5
            value: 57.38799999999999
          - type: ndcg_at_1
            value: 49.028
          - type: ndcg_at_10
            value: 60.161
          - type: ndcg_at_100
            value: 63.806
          - type: ndcg_at_1000
            value: 64.821
          - type: ndcg_at_3
            value: 55.199
          - type: ndcg_at_5
            value: 57.830999999999996
          - type: precision_at_1
            value: 49.028
          - type: precision_at_10
            value: 9.455
          - type: precision_at_100
            value: 1.216
          - type: precision_at_1000
            value: 0.135
          - type: precision_at_3
            value: 24.242
          - type: precision_at_5
            value: 16.614
          - type: recall_at_1
            value: 42.998999999999995
          - type: recall_at_10
            value: 72.542
          - type: recall_at_100
            value: 88.605
          - type: recall_at_1000
            value: 95.676
          - type: recall_at_3
            value: 59.480999999999995
          - type: recall_at_5
            value: 65.886
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gis
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: 5003b3064772da1887988e05400cf3806fe491f2
        metrics:
          - type: map_at_1
            value: 27.907
          - type: map_at_10
            value: 35.975
          - type: map_at_100
            value: 36.985
          - type: map_at_1000
            value: 37.063
          - type: map_at_3
            value: 33.467999999999996
          - type: map_at_5
            value: 34.749
          - type: mrr_at_1
            value: 30.056
          - type: mrr_at_10
            value: 38.047
          - type: mrr_at_100
            value: 38.932
          - type: mrr_at_1000
            value: 38.991
          - type: mrr_at_3
            value: 35.705999999999996
          - type: mrr_at_5
            value: 36.966
          - type: ndcg_at_1
            value: 30.056
          - type: ndcg_at_10
            value: 40.631
          - type: ndcg_at_100
            value: 45.564
          - type: ndcg_at_1000
            value: 47.685
          - type: ndcg_at_3
            value: 35.748000000000005
          - type: ndcg_at_5
            value: 37.921
          - type: precision_at_1
            value: 30.056
          - type: precision_at_10
            value: 6.079
          - type: precision_at_100
            value: 0.898
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 14.727
          - type: precision_at_5
            value: 10.056
          - type: recall_at_1
            value: 27.907
          - type: recall_at_10
            value: 52.981
          - type: recall_at_100
            value: 75.53999999999999
          - type: recall_at_1000
            value: 91.759
          - type: recall_at_3
            value: 39.878
          - type: recall_at_5
            value: 45.077
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-mathematica
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: 90fceea13679c63fe563ded68f3b6f06e50061de
        metrics:
          - type: map_at_1
            value: 16.764000000000003
          - type: map_at_10
            value: 24.294
          - type: map_at_100
            value: 25.507999999999996
          - type: map_at_1000
            value: 25.64
          - type: map_at_3
            value: 21.807000000000002
          - type: map_at_5
            value: 23.21
          - type: mrr_at_1
            value: 20.771
          - type: mrr_at_10
            value: 28.677000000000003
          - type: mrr_at_100
            value: 29.742
          - type: mrr_at_1000
            value: 29.816
          - type: mrr_at_3
            value: 26.327
          - type: mrr_at_5
            value: 27.639000000000003
          - type: ndcg_at_1
            value: 20.771
          - type: ndcg_at_10
            value: 29.21
          - type: ndcg_at_100
            value: 34.788000000000004
          - type: ndcg_at_1000
            value: 37.813
          - type: ndcg_at_3
            value: 24.632
          - type: ndcg_at_5
            value: 26.801000000000002
          - type: precision_at_1
            value: 20.771
          - type: precision_at_10
            value: 5.373
          - type: precision_at_100
            value: 0.923
          - type: precision_at_1000
            value: 0.133
          - type: precision_at_3
            value: 12.065
          - type: precision_at_5
            value: 8.706
          - type: recall_at_1
            value: 16.764000000000003
          - type: recall_at_10
            value: 40.072
          - type: recall_at_100
            value: 63.856
          - type: recall_at_1000
            value: 85.141
          - type: recall_at_3
            value: 27.308
          - type: recall_at_5
            value: 32.876
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-physics
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
        metrics:
          - type: map_at_1
            value: 31.194
          - type: map_at_10
            value: 40.731
          - type: map_at_100
            value: 42.073
          - type: map_at_1000
            value: 42.178
          - type: map_at_3
            value: 37.726
          - type: map_at_5
            value: 39.474
          - type: mrr_at_1
            value: 37.729
          - type: mrr_at_10
            value: 46.494
          - type: mrr_at_100
            value: 47.368
          - type: mrr_at_1000
            value: 47.407
          - type: mrr_at_3
            value: 44.224999999999994
          - type: mrr_at_5
            value: 45.582
          - type: ndcg_at_1
            value: 37.729
          - type: ndcg_at_10
            value: 46.312999999999995
          - type: ndcg_at_100
            value: 51.915
          - type: ndcg_at_1000
            value: 53.788000000000004
          - type: ndcg_at_3
            value: 41.695
          - type: ndcg_at_5
            value: 43.956
          - type: precision_at_1
            value: 37.729
          - type: precision_at_10
            value: 8.181
          - type: precision_at_100
            value: 1.275
          - type: precision_at_1000
            value: 0.16199999999999998
          - type: precision_at_3
            value: 19.41
          - type: precision_at_5
            value: 13.648
          - type: recall_at_1
            value: 31.194
          - type: recall_at_10
            value: 57.118
          - type: recall_at_100
            value: 80.759
          - type: recall_at_1000
            value: 92.779
          - type: recall_at_3
            value: 44.083
          - type: recall_at_5
            value: 50.044999999999995
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-programmers
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
        metrics:
          - type: map_at_1
            value: 28.047
          - type: map_at_10
            value: 37.79
          - type: map_at_100
            value: 39.145
          - type: map_at_1000
            value: 39.254
          - type: map_at_3
            value: 34.857
          - type: map_at_5
            value: 36.545
          - type: mrr_at_1
            value: 35.388
          - type: mrr_at_10
            value: 43.475
          - type: mrr_at_100
            value: 44.440000000000005
          - type: mrr_at_1000
            value: 44.494
          - type: mrr_at_3
            value: 41.286
          - type: mrr_at_5
            value: 42.673
          - type: ndcg_at_1
            value: 35.388
          - type: ndcg_at_10
            value: 43.169000000000004
          - type: ndcg_at_100
            value: 48.785000000000004
          - type: ndcg_at_1000
            value: 51.029
          - type: ndcg_at_3
            value: 38.801
          - type: ndcg_at_5
            value: 40.9
          - type: precision_at_1
            value: 35.388
          - type: precision_at_10
            value: 7.7509999999999994
          - type: precision_at_100
            value: 1.212
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 18.455
          - type: precision_at_5
            value: 13.014000000000001
          - type: recall_at_1
            value: 28.047
          - type: recall_at_10
            value: 53.53099999999999
          - type: recall_at_100
            value: 77.285
          - type: recall_at_1000
            value: 92.575
          - type: recall_at_3
            value: 40.949000000000005
          - type: recall_at_5
            value: 46.742
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 28.131999999999994
          - type: map_at_10
            value: 36.93333333333334
          - type: map_at_100
            value: 38.117250000000006
          - type: map_at_1000
            value: 38.23275
          - type: map_at_3
            value: 34.19708333333333
          - type: map_at_5
            value: 35.725166666666674
          - type: mrr_at_1
            value: 33.16116666666667
          - type: mrr_at_10
            value: 41.057833333333335
          - type: mrr_at_100
            value: 41.90033333333333
          - type: mrr_at_1000
            value: 41.95625
          - type: mrr_at_3
            value: 38.757333333333335
          - type: mrr_at_5
            value: 40.097333333333324
          - type: ndcg_at_1
            value: 33.16116666666667
          - type: ndcg_at_10
            value: 42.01983333333333
          - type: ndcg_at_100
            value: 46.99916666666667
          - type: ndcg_at_1000
            value: 49.21783333333334
          - type: ndcg_at_3
            value: 37.479916666666654
          - type: ndcg_at_5
            value: 39.6355
          - type: precision_at_1
            value: 33.16116666666667
          - type: precision_at_10
            value: 7.230249999999999
          - type: precision_at_100
            value: 1.1411666666666667
          - type: precision_at_1000
            value: 0.1520833333333333
          - type: precision_at_3
            value: 17.028166666666667
          - type: precision_at_5
            value: 12.046999999999999
          - type: recall_at_1
            value: 28.131999999999994
          - type: recall_at_10
            value: 52.825500000000005
          - type: recall_at_100
            value: 74.59608333333333
          - type: recall_at_1000
            value: 89.87916666666668
          - type: recall_at_3
            value: 40.13625
          - type: recall_at_5
            value: 45.699999999999996
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-stats
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
        metrics:
          - type: map_at_1
            value: 24.773999999999997
          - type: map_at_10
            value: 31.997999999999998
          - type: map_at_100
            value: 32.857
          - type: map_at_1000
            value: 32.957
          - type: map_at_3
            value: 30.041
          - type: map_at_5
            value: 31.119000000000003
          - type: mrr_at_1
            value: 27.607
          - type: mrr_at_10
            value: 34.538000000000004
          - type: mrr_at_100
            value: 35.308
          - type: mrr_at_1000
            value: 35.375
          - type: mrr_at_3
            value: 32.643
          - type: mrr_at_5
            value: 33.755
          - type: ndcg_at_1
            value: 27.607
          - type: ndcg_at_10
            value: 36.035000000000004
          - type: ndcg_at_100
            value: 40.351
          - type: ndcg_at_1000
            value: 42.684
          - type: ndcg_at_3
            value: 32.414
          - type: ndcg_at_5
            value: 34.11
          - type: precision_at_1
            value: 27.607
          - type: precision_at_10
            value: 5.6129999999999995
          - type: precision_at_100
            value: 0.8370000000000001
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 13.957
          - type: precision_at_5
            value: 9.571
          - type: recall_at_1
            value: 24.773999999999997
          - type: recall_at_10
            value: 45.717
          - type: recall_at_100
            value: 65.499
          - type: recall_at_1000
            value: 82.311
          - type: recall_at_3
            value: 35.716
          - type: recall_at_5
            value: 40.007999999999996
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-tex
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: 46989137a86843e03a6195de44b09deda022eec7
        metrics:
          - type: map_at_1
            value: 19.227
          - type: map_at_10
            value: 26.649
          - type: map_at_100
            value: 27.711999999999996
          - type: map_at_1000
            value: 27.837
          - type: map_at_3
            value: 24.454
          - type: map_at_5
            value: 25.772000000000002
          - type: mrr_at_1
            value: 23.433999999999997
          - type: mrr_at_10
            value: 30.564999999999998
          - type: mrr_at_100
            value: 31.44
          - type: mrr_at_1000
            value: 31.513999999999996
          - type: mrr_at_3
            value: 28.435
          - type: mrr_at_5
            value: 29.744999999999997
          - type: ndcg_at_1
            value: 23.433999999999997
          - type: ndcg_at_10
            value: 31.104
          - type: ndcg_at_100
            value: 36.172
          - type: ndcg_at_1000
            value: 39.006
          - type: ndcg_at_3
            value: 27.248
          - type: ndcg_at_5
            value: 29.249000000000002
          - type: precision_at_1
            value: 23.433999999999997
          - type: precision_at_10
            value: 5.496
          - type: precision_at_100
            value: 0.9490000000000001
          - type: precision_at_1000
            value: 0.13699999999999998
          - type: precision_at_3
            value: 12.709000000000001
          - type: precision_at_5
            value: 9.209
          - type: recall_at_1
            value: 19.227
          - type: recall_at_10
            value: 40.492
          - type: recall_at_100
            value: 63.304
          - type: recall_at_1000
            value: 83.45
          - type: recall_at_3
            value: 29.713
          - type: recall_at_5
            value: 34.82
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-unix
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
        metrics:
          - type: map_at_1
            value: 29.199
          - type: map_at_10
            value: 37.617
          - type: map_at_100
            value: 38.746
          - type: map_at_1000
            value: 38.851
          - type: map_at_3
            value: 34.882000000000005
          - type: map_at_5
            value: 36.571999999999996
          - type: mrr_at_1
            value: 33.489000000000004
          - type: mrr_at_10
            value: 41.089999999999996
          - type: mrr_at_100
            value: 41.965
          - type: mrr_at_1000
            value: 42.028
          - type: mrr_at_3
            value: 38.666
          - type: mrr_at_5
            value: 40.159
          - type: ndcg_at_1
            value: 33.489000000000004
          - type: ndcg_at_10
            value: 42.487
          - type: ndcg_at_100
            value: 47.552
          - type: ndcg_at_1000
            value: 49.774
          - type: ndcg_at_3
            value: 37.623
          - type: ndcg_at_5
            value: 40.184999999999995
          - type: precision_at_1
            value: 33.489000000000004
          - type: precision_at_10
            value: 6.94
          - type: precision_at_100
            value: 1.0699999999999998
          - type: precision_at_1000
            value: 0.136
          - type: precision_at_3
            value: 16.667
          - type: precision_at_5
            value: 11.922
          - type: recall_at_1
            value: 29.199
          - type: recall_at_10
            value: 53.689
          - type: recall_at_100
            value: 75.374
          - type: recall_at_1000
            value: 90.64999999999999
          - type: recall_at_3
            value: 40.577999999999996
          - type: recall_at_5
            value: 46.909
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-webmasters
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: 160c094312a0e1facb97e55eeddb698c0abe3571
        metrics:
          - type: map_at_1
            value: 27.206999999999997
          - type: map_at_10
            value: 36.146
          - type: map_at_100
            value: 37.759
          - type: map_at_1000
            value: 37.979
          - type: map_at_3
            value: 32.967999999999996
          - type: map_at_5
            value: 34.809
          - type: mrr_at_1
            value: 32.806000000000004
          - type: mrr_at_10
            value: 40.449
          - type: mrr_at_100
            value: 41.404999999999994
          - type: mrr_at_1000
            value: 41.457
          - type: mrr_at_3
            value: 37.614999999999995
          - type: mrr_at_5
            value: 39.324999999999996
          - type: ndcg_at_1
            value: 32.806000000000004
          - type: ndcg_at_10
            value: 41.911
          - type: ndcg_at_100
            value: 47.576
          - type: ndcg_at_1000
            value: 50.072
          - type: ndcg_at_3
            value: 36.849
          - type: ndcg_at_5
            value: 39.475
          - type: precision_at_1
            value: 32.806000000000004
          - type: precision_at_10
            value: 8.103
          - type: precision_at_100
            value: 1.557
          - type: precision_at_1000
            value: 0.242
          - type: precision_at_3
            value: 17.26
          - type: precision_at_5
            value: 12.885
          - type: recall_at_1
            value: 27.206999999999997
          - type: recall_at_10
            value: 52.56999999999999
          - type: recall_at_100
            value: 78.302
          - type: recall_at_1000
            value: 94.121
          - type: recall_at_3
            value: 38.317
          - type: recall_at_5
            value: 45.410000000000004
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-wordpress
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 24.221
          - type: map_at_10
            value: 30.826999999999998
          - type: map_at_100
            value: 31.845000000000002
          - type: map_at_1000
            value: 31.95
          - type: map_at_3
            value: 28.547
          - type: map_at_5
            value: 29.441
          - type: mrr_at_1
            value: 26.247999999999998
          - type: mrr_at_10
            value: 32.957
          - type: mrr_at_100
            value: 33.819
          - type: mrr_at_1000
            value: 33.899
          - type: mrr_at_3
            value: 30.714999999999996
          - type: mrr_at_5
            value: 31.704
          - type: ndcg_at_1
            value: 26.247999999999998
          - type: ndcg_at_10
            value: 35.171
          - type: ndcg_at_100
            value: 40.098
          - type: ndcg_at_1000
            value: 42.67
          - type: ndcg_at_3
            value: 30.508999999999997
          - type: ndcg_at_5
            value: 32.022
          - type: precision_at_1
            value: 26.247999999999998
          - type: precision_at_10
            value: 5.36
          - type: precision_at_100
            value: 0.843
          - type: precision_at_1000
            value: 0.11499999999999999
          - type: precision_at_3
            value: 12.568999999999999
          - type: precision_at_5
            value: 8.540000000000001
          - type: recall_at_1
            value: 24.221
          - type: recall_at_10
            value: 46.707
          - type: recall_at_100
            value: 69.104
          - type: recall_at_1000
            value: 88.19500000000001
          - type: recall_at_3
            value: 33.845
          - type: recall_at_5
            value: 37.375
      - task:
          type: Retrieval
        dataset:
          type: mteb/climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
        metrics:
          - type: map_at_1
            value: 13.624
          - type: map_at_10
            value: 22.557
          - type: map_at_100
            value: 24.367
          - type: map_at_1000
            value: 24.54
          - type: map_at_3
            value: 18.988
          - type: map_at_5
            value: 20.785999999999998
          - type: mrr_at_1
            value: 30.619000000000003
          - type: mrr_at_10
            value: 42.019
          - type: mrr_at_100
            value: 42.818
          - type: mrr_at_1000
            value: 42.856
          - type: mrr_at_3
            value: 38.578
          - type: mrr_at_5
            value: 40.669
          - type: ndcg_at_1
            value: 30.619000000000003
          - type: ndcg_at_10
            value: 31.252999999999997
          - type: ndcg_at_100
            value: 38.238
          - type: ndcg_at_1000
            value: 41.368
          - type: ndcg_at_3
            value: 25.843
          - type: ndcg_at_5
            value: 27.638
          - type: precision_at_1
            value: 30.619000000000003
          - type: precision_at_10
            value: 9.687
          - type: precision_at_100
            value: 1.718
          - type: precision_at_1000
            value: 0.22999999999999998
          - type: precision_at_3
            value: 18.849
          - type: precision_at_5
            value: 14.463000000000001
          - type: recall_at_1
            value: 13.624
          - type: recall_at_10
            value: 36.693999999999996
          - type: recall_at_100
            value: 60.9
          - type: recall_at_1000
            value: 78.46
          - type: recall_at_3
            value: 23.354
          - type: recall_at_5
            value: 28.756999999999998
      - task:
          type: Retrieval
        dataset:
          type: mteb/dbpedia
          name: MTEB DBPedia
          config: default
          split: test
          revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
        metrics:
          - type: map_at_1
            value: 9.077
          - type: map_at_10
            value: 19.813
          - type: map_at_100
            value: 27.822999999999997
          - type: map_at_1000
            value: 29.485
          - type: map_at_3
            value: 14.255999999999998
          - type: map_at_5
            value: 16.836000000000002
          - type: mrr_at_1
            value: 69.25
          - type: mrr_at_10
            value: 77.059
          - type: mrr_at_100
            value: 77.41
          - type: mrr_at_1000
            value: 77.416
          - type: mrr_at_3
            value: 75.625
          - type: mrr_at_5
            value: 76.512
          - type: ndcg_at_1
            value: 55.75
          - type: ndcg_at_10
            value: 41.587
          - type: ndcg_at_100
            value: 46.048
          - type: ndcg_at_1000
            value: 53.172
          - type: ndcg_at_3
            value: 46.203
          - type: ndcg_at_5
            value: 43.696
          - type: precision_at_1
            value: 69.25
          - type: precision_at_10
            value: 32.95
          - type: precision_at_100
            value: 10.555
          - type: precision_at_1000
            value: 2.136
          - type: precision_at_3
            value: 49.667
          - type: precision_at_5
            value: 42.5
          - type: recall_at_1
            value: 9.077
          - type: recall_at_10
            value: 25.249
          - type: recall_at_100
            value: 51.964
          - type: recall_at_1000
            value: 74.51
          - type: recall_at_3
            value: 15.584000000000001
          - type: recall_at_5
            value: 19.717000000000002
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 45.769999999999996
          - type: f1
            value: 41.64144711933962
      - task:
          type: Retrieval
        dataset:
          type: mteb/fever
          name: MTEB FEVER
          config: default
          split: test
          revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
        metrics:
          - type: map_at_1
            value: 67.098
          - type: map_at_10
            value: 77.69800000000001
          - type: map_at_100
            value: 77.947
          - type: map_at_1000
            value: 77.961
          - type: map_at_3
            value: 76.278
          - type: map_at_5
            value: 77.217
          - type: mrr_at_1
            value: 72.532
          - type: mrr_at_10
            value: 82.41199999999999
          - type: mrr_at_100
            value: 82.527
          - type: mrr_at_1000
            value: 82.529
          - type: mrr_at_3
            value: 81.313
          - type: mrr_at_5
            value: 82.069
          - type: ndcg_at_1
            value: 72.532
          - type: ndcg_at_10
            value: 82.488
          - type: ndcg_at_100
            value: 83.382
          - type: ndcg_at_1000
            value: 83.622
          - type: ndcg_at_3
            value: 80.101
          - type: ndcg_at_5
            value: 81.52199999999999
          - type: precision_at_1
            value: 72.532
          - type: precision_at_10
            value: 10.203
          - type: precision_at_100
            value: 1.082
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 31.308000000000003
          - type: precision_at_5
            value: 19.652
          - type: recall_at_1
            value: 67.098
          - type: recall_at_10
            value: 92.511
          - type: recall_at_100
            value: 96.06099999999999
          - type: recall_at_1000
            value: 97.548
          - type: recall_at_3
            value: 86.105
          - type: recall_at_5
            value: 89.661
      - task:
          type: Retrieval
        dataset:
          type: mteb/fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: 27a168819829fe9bcd655c2df245fb19452e8e06
        metrics:
          - type: map_at_1
            value: 18.681
          - type: map_at_10
            value: 31.739
          - type: map_at_100
            value: 33.503
          - type: map_at_1000
            value: 33.69
          - type: map_at_3
            value: 27.604
          - type: map_at_5
            value: 29.993
          - type: mrr_at_1
            value: 37.5
          - type: mrr_at_10
            value: 46.933
          - type: mrr_at_100
            value: 47.771
          - type: mrr_at_1000
            value: 47.805
          - type: mrr_at_3
            value: 44.239
          - type: mrr_at_5
            value: 45.766
          - type: ndcg_at_1
            value: 37.5
          - type: ndcg_at_10
            value: 39.682
          - type: ndcg_at_100
            value: 46.127
          - type: ndcg_at_1000
            value: 48.994
          - type: ndcg_at_3
            value: 35.655
          - type: ndcg_at_5
            value: 37.036
          - type: precision_at_1
            value: 37.5
          - type: precision_at_10
            value: 11.08
          - type: precision_at_100
            value: 1.765
          - type: precision_at_1000
            value: 0.22999999999999998
          - type: precision_at_3
            value: 23.919999999999998
          - type: precision_at_5
            value: 17.809
          - type: recall_at_1
            value: 18.681
          - type: recall_at_10
            value: 47.548
          - type: recall_at_100
            value: 71.407
          - type: recall_at_1000
            value: 87.805
          - type: recall_at_3
            value: 32.979
          - type: recall_at_5
            value: 39.192
      - task:
          type: Retrieval
        dataset:
          type: mteb/hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: ab518f4d6fcca38d87c25209f94beba119d02014
        metrics:
          - type: map_at_1
            value: 38.257999999999996
          - type: map_at_10
            value: 57.605
          - type: map_at_100
            value: 58.50300000000001
          - type: map_at_1000
            value: 58.568
          - type: map_at_3
            value: 54.172
          - type: map_at_5
            value: 56.323
          - type: mrr_at_1
            value: 76.51599999999999
          - type: mrr_at_10
            value: 82.584
          - type: mrr_at_100
            value: 82.78
          - type: mrr_at_1000
            value: 82.787
          - type: mrr_at_3
            value: 81.501
          - type: mrr_at_5
            value: 82.185
          - type: ndcg_at_1
            value: 76.51599999999999
          - type: ndcg_at_10
            value: 66.593
          - type: ndcg_at_100
            value: 69.699
          - type: ndcg_at_1000
            value: 70.953
          - type: ndcg_at_3
            value: 61.673
          - type: ndcg_at_5
            value: 64.42
          - type: precision_at_1
            value: 76.51599999999999
          - type: precision_at_10
            value: 13.857
          - type: precision_at_100
            value: 1.628
          - type: precision_at_1000
            value: 0.179
          - type: precision_at_3
            value: 38.956
          - type: precision_at_5
            value: 25.541999999999998
          - type: recall_at_1
            value: 38.257999999999996
          - type: recall_at_10
            value: 69.284
          - type: recall_at_100
            value: 81.391
          - type: recall_at_1000
            value: 89.689
          - type: recall_at_3
            value: 58.433
          - type: recall_at_5
            value: 63.856
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 69.48679999999999
          - type: ap
            value: 63.97638838971138
          - type: f1
            value: 69.22731638841675
      - task:
          type: Retrieval
        dataset:
          type: mteb/msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: c5a29a104738b98a9e76336939199e264163d4a0
        metrics:
          - type: map_at_1
            value: 20.916999999999998
          - type: map_at_10
            value: 32.929
          - type: map_at_100
            value: 34.1
          - type: map_at_1000
            value: 34.152
          - type: map_at_3
            value: 29.065
          - type: map_at_5
            value: 31.287
          - type: mrr_at_1
            value: 21.562
          - type: mrr_at_10
            value: 33.533
          - type: mrr_at_100
            value: 34.644000000000005
          - type: mrr_at_1000
            value: 34.69
          - type: mrr_at_3
            value: 29.735
          - type: mrr_at_5
            value: 31.928
          - type: ndcg_at_1
            value: 21.562
          - type: ndcg_at_10
            value: 39.788000000000004
          - type: ndcg_at_100
            value: 45.434999999999995
          - type: ndcg_at_1000
            value: 46.75
          - type: ndcg_at_3
            value: 31.942999999999998
          - type: ndcg_at_5
            value: 35.888
          - type: precision_at_1
            value: 21.562
          - type: precision_at_10
            value: 6.348
          - type: precision_at_100
            value: 0.918
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 13.682
          - type: precision_at_5
            value: 10.189
          - type: recall_at_1
            value: 20.916999999999998
          - type: recall_at_10
            value: 60.926
          - type: recall_at_100
            value: 87.03800000000001
          - type: recall_at_1000
            value: 97.085
          - type: recall_at_3
            value: 39.637
          - type: recall_at_5
            value: 49.069
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 90.93935248518011
          - type: f1
            value: 90.56439321844506
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 58.62517099863203
          - type: f1
            value: 40.69925681703197
      - task:
          type: Classification
        dataset:
          type: masakhane/masakhanews
          name: MTEB MasakhaNEWSClassification (eng)
          config: eng
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: accuracy
            value: 76.29746835443039
          - type: f1
            value: 75.31702672039506
      - task:
          type: Clustering
        dataset:
          type: masakhane/masakhanews
          name: MTEB MasakhaNEWSClusteringP2P (eng)
          config: eng
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: v_measure
            value: 43.05495067062023
      - task:
          type: Clustering
        dataset:
          type: masakhane/masakhanews
          name: MTEB MasakhaNEWSClusteringS2S (eng)
          config: eng
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: v_measure
            value: 19.625272848173843
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.76126429051781
          - type: f1
            value: 62.60284261265268
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.05043712172159
          - type: f1
            value: 69.08340521169049
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 30.78969229005989
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 27.954325178520335
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 30.601827413968596
          - type: mrr
            value: 31.515372019474196
      - task:
          type: Retrieval
        dataset:
          type: mteb/nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
        metrics:
          - type: map_at_1
            value: 5.4559999999999995
          - type: map_at_10
            value: 12.039
          - type: map_at_100
            value: 14.804999999999998
          - type: map_at_1000
            value: 16.081
          - type: map_at_3
            value: 8.996
          - type: map_at_5
            value: 10.357
          - type: mrr_at_1
            value: 45.82
          - type: mrr_at_10
            value: 53.583999999999996
          - type: mrr_at_100
            value: 54.330999999999996
          - type: mrr_at_1000
            value: 54.366
          - type: mrr_at_3
            value: 52.166999999999994
          - type: mrr_at_5
            value: 52.971999999999994
          - type: ndcg_at_1
            value: 44.427
          - type: ndcg_at_10
            value: 32.536
          - type: ndcg_at_100
            value: 29.410999999999998
          - type: ndcg_at_1000
            value: 38.012
          - type: ndcg_at_3
            value: 38.674
          - type: ndcg_at_5
            value: 36.107
          - type: precision_at_1
            value: 45.82
          - type: precision_at_10
            value: 23.591
          - type: precision_at_100
            value: 7.35
          - type: precision_at_1000
            value: 1.9769999999999999
          - type: precision_at_3
            value: 36.016999999999996
          - type: precision_at_5
            value: 30.959999999999997
          - type: recall_at_1
            value: 5.4559999999999995
          - type: recall_at_10
            value: 15.387
          - type: recall_at_100
            value: 28.754999999999995
          - type: recall_at_1000
            value: 59.787
          - type: recall_at_3
            value: 10.137
          - type: recall_at_5
            value: 12.200999999999999
      - task:
          type: Retrieval
        dataset:
          type: mteb/nq
          name: MTEB NQ
          config: default
          split: test
          revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
        metrics:
          - type: map_at_1
            value: 32.609
          - type: map_at_10
            value: 48.522
          - type: map_at_100
            value: 49.468
          - type: map_at_1000
            value: 49.497
          - type: map_at_3
            value: 44.327
          - type: map_at_5
            value: 46.937
          - type: mrr_at_1
            value: 36.616
          - type: mrr_at_10
            value: 50.943000000000005
          - type: mrr_at_100
            value: 51.626000000000005
          - type: mrr_at_1000
            value: 51.647
          - type: mrr_at_3
            value: 47.532999999999994
          - type: mrr_at_5
            value: 49.714000000000006
          - type: ndcg_at_1
            value: 36.586999999999996
          - type: ndcg_at_10
            value: 56.19499999999999
          - type: ndcg_at_100
            value: 60.014
          - type: ndcg_at_1000
            value: 60.707
          - type: ndcg_at_3
            value: 48.486000000000004
          - type: ndcg_at_5
            value: 52.791999999999994
          - type: precision_at_1
            value: 36.586999999999996
          - type: precision_at_10
            value: 9.139999999999999
          - type: precision_at_100
            value: 1.129
          - type: precision_at_1000
            value: 0.11900000000000001
          - type: precision_at_3
            value: 22.171
          - type: precision_at_5
            value: 15.787999999999998
          - type: recall_at_1
            value: 32.609
          - type: recall_at_10
            value: 77.011
          - type: recall_at_100
            value: 93.202
          - type: recall_at_1000
            value: 98.344
          - type: recall_at_3
            value: 57.286
          - type: recall_at_5
            value: 67.181
      - task:
          type: Classification
        dataset:
          type: ag_news
          name: MTEB NewsClassification
          config: default
          split: test
          revision: eb185aade064a813bc0b7f42de02595523103ca4
        metrics:
          - type: accuracy
            value: 77.4421052631579
          - type: f1
            value: 77.23976860913628
      - task:
          type: PairClassification
        dataset:
          type: GEM/opusparcus
          name: MTEB OpusparcusPC (en)
          config: en
          split: test
          revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
        metrics:
          - type: cos_sim_accuracy
            value: 99.89816700610999
          - type: cos_sim_ap
            value: 100
          - type: cos_sim_f1
            value: 99.9490575649516
          - type: cos_sim_precision
            value: 100
          - type: cos_sim_recall
            value: 99.89816700610999
          - type: dot_accuracy
            value: 99.89816700610999
          - type: dot_ap
            value: 100
          - type: dot_f1
            value: 99.9490575649516
          - type: dot_precision
            value: 100
          - type: dot_recall
            value: 99.89816700610999
          - type: euclidean_accuracy
            value: 99.89816700610999
          - type: euclidean_ap
            value: 100
          - type: euclidean_f1
            value: 99.9490575649516
          - type: euclidean_precision
            value: 100
          - type: euclidean_recall
            value: 99.89816700610999
          - type: manhattan_accuracy
            value: 99.89816700610999
          - type: manhattan_ap
            value: 100
          - type: manhattan_f1
            value: 99.9490575649516
          - type: manhattan_precision
            value: 100
          - type: manhattan_recall
            value: 99.89816700610999
          - type: max_accuracy
            value: 99.89816700610999
          - type: max_ap
            value: 100
          - type: max_f1
            value: 99.9490575649516
      - task:
          type: PairClassification
        dataset:
          type: paws-x
          name: MTEB PawsX (en)
          config: en
          split: test
          revision: 8a04d940a42cd40658986fdd8e3da561533a3646
        metrics:
          - type: cos_sim_accuracy
            value: 61.25000000000001
          - type: cos_sim_ap
            value: 59.23166242799505
          - type: cos_sim_f1
            value: 62.53016201309893
          - type: cos_sim_precision
            value: 45.486459378134406
          - type: cos_sim_recall
            value: 100
          - type: dot_accuracy
            value: 61.25000000000001
          - type: dot_ap
            value: 59.23109306756652
          - type: dot_f1
            value: 62.53016201309893
          - type: dot_precision
            value: 45.486459378134406
          - type: dot_recall
            value: 100
          - type: euclidean_accuracy
            value: 61.25000000000001
          - type: euclidean_ap
            value: 59.23166242799505
          - type: euclidean_f1
            value: 62.53016201309893
          - type: euclidean_precision
            value: 45.486459378134406
          - type: euclidean_recall
            value: 100
          - type: manhattan_accuracy
            value: 61.25000000000001
          - type: manhattan_ap
            value: 59.23015114712089
          - type: manhattan_f1
            value: 62.50861474844934
          - type: manhattan_precision
            value: 45.46365914786967
          - type: manhattan_recall
            value: 100
          - type: max_accuracy
            value: 61.25000000000001
          - type: max_ap
            value: 59.23166242799505
          - type: max_f1
            value: 62.53016201309893
      - task:
          type: Retrieval
        dataset:
          type: mteb/quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
        metrics:
          - type: map_at_1
            value: 69.919
          - type: map_at_10
            value: 83.636
          - type: map_at_100
            value: 84.27
          - type: map_at_1000
            value: 84.289
          - type: map_at_3
            value: 80.744
          - type: map_at_5
            value: 82.509
          - type: mrr_at_1
            value: 80.52
          - type: mrr_at_10
            value: 86.751
          - type: mrr_at_100
            value: 86.875
          - type: mrr_at_1000
            value: 86.876
          - type: mrr_at_3
            value: 85.798
          - type: mrr_at_5
            value: 86.414
          - type: ndcg_at_1
            value: 80.53
          - type: ndcg_at_10
            value: 87.465
          - type: ndcg_at_100
            value: 88.762
          - type: ndcg_at_1000
            value: 88.90599999999999
          - type: ndcg_at_3
            value: 84.634
          - type: ndcg_at_5
            value: 86.09400000000001
          - type: precision_at_1
            value: 80.53
          - type: precision_at_10
            value: 13.263
          - type: precision_at_100
            value: 1.517
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 36.973
          - type: precision_at_5
            value: 24.25
          - type: recall_at_1
            value: 69.919
          - type: recall_at_10
            value: 94.742
          - type: recall_at_100
            value: 99.221
          - type: recall_at_1000
            value: 99.917
          - type: recall_at_3
            value: 86.506
          - type: recall_at_5
            value: 90.736
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 50.47309147963901
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
        metrics:
          - type: v_measure
            value: 60.53779561923047
      - task:
          type: Retrieval
        dataset:
          type: mteb/scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
        metrics:
          - type: map_at_1
            value: 4.843
          - type: map_at_10
            value: 11.664
          - type: map_at_100
            value: 13.499
          - type: map_at_1000
            value: 13.771
          - type: map_at_3
            value: 8.602
          - type: map_at_5
            value: 10.164
          - type: mrr_at_1
            value: 23.9
          - type: mrr_at_10
            value: 34.018
          - type: mrr_at_100
            value: 35.099000000000004
          - type: mrr_at_1000
            value: 35.162
          - type: mrr_at_3
            value: 31.233
          - type: mrr_at_5
            value: 32.793
          - type: ndcg_at_1
            value: 23.9
          - type: ndcg_at_10
            value: 19.42
          - type: ndcg_at_100
            value: 26.715
          - type: ndcg_at_1000
            value: 31.776
          - type: ndcg_at_3
            value: 19.165
          - type: ndcg_at_5
            value: 16.46
          - type: precision_at_1
            value: 23.9
          - type: precision_at_10
            value: 9.82
          - type: precision_at_100
            value: 2.0340000000000003
          - type: precision_at_1000
            value: 0.325
          - type: precision_at_3
            value: 17.767
          - type: precision_at_5
            value: 14.24
          - type: recall_at_1
            value: 4.843
          - type: recall_at_10
            value: 19.895
          - type: recall_at_100
            value: 41.302
          - type: recall_at_1000
            value: 66.077
          - type: recall_at_3
            value: 10.803
          - type: recall_at_5
            value: 14.418000000000001
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
        metrics:
          - type: cos_sim_pearson
            value: 76.94120735638143
          - type: cos_sim_spearman
            value: 69.66114097154585
          - type: euclidean_pearson
            value: 73.11242035696426
          - type: euclidean_spearman
            value: 69.66114271982464
          - type: manhattan_pearson
            value: 73.07993034858605
          - type: manhattan_spearman
            value: 69.6457893357314
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 74.72893353272778
          - type: cos_sim_spearman
            value: 68.78540928870311
          - type: euclidean_pearson
            value: 71.13907970605574
          - type: euclidean_spearman
            value: 68.78540928870311
          - type: manhattan_pearson
            value: 71.02709590547859
          - type: manhattan_spearman
            value: 68.71685896660532
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 79.30142652684971
          - type: cos_sim_spearman
            value: 79.61879435615303
          - type: euclidean_pearson
            value: 79.08730432883864
          - type: euclidean_spearman
            value: 79.61879435615303
          - type: manhattan_pearson
            value: 78.99621073156322
          - type: manhattan_spearman
            value: 79.53806342308278
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 78.99585233036139
          - type: cos_sim_spearman
            value: 75.57574519760183
          - type: euclidean_pearson
            value: 77.33835658613162
          - type: euclidean_spearman
            value: 75.57573873503655
          - type: manhattan_pearson
            value: 77.12175044789362
          - type: manhattan_spearman
            value: 75.41293517634836
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 83.9694268253376
          - type: cos_sim_spearman
            value: 84.64256921939338
          - type: euclidean_pearson
            value: 83.92322958711
          - type: euclidean_spearman
            value: 84.64257976421872
          - type: manhattan_pearson
            value: 83.93503107204337
          - type: manhattan_spearman
            value: 84.63611608236032
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 81.09041419790253
          - type: cos_sim_spearman
            value: 82.39869157752557
          - type: euclidean_pearson
            value: 82.04595698258301
          - type: euclidean_spearman
            value: 82.39869157752557
          - type: manhattan_pearson
            value: 81.97581168053004
          - type: manhattan_spearman
            value: 82.34255320578193
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 86.35210432821825
          - type: cos_sim_spearman
            value: 86.73200885328937
          - type: euclidean_pearson
            value: 86.8527089168747
          - type: euclidean_spearman
            value: 86.73200885328937
          - type: manhattan_pearson
            value: 86.95671235295457
          - type: manhattan_spearman
            value: 86.77713700838545
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 68.91106612960657
          - type: cos_sim_spearman
            value: 69.48524490302286
          - type: euclidean_pearson
            value: 70.51347841618035
          - type: euclidean_spearman
            value: 69.48524490302286
          - type: manhattan_pearson
            value: 70.31770181334245
          - type: manhattan_spearman
            value: 69.12494700138238
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 81.54104342761988
          - type: cos_sim_spearman
            value: 81.18789220331483
          - type: euclidean_pearson
            value: 81.5895544590969
          - type: euclidean_spearman
            value: 81.18789220331483
          - type: manhattan_pearson
            value: 81.4738562449809
          - type: manhattan_spearman
            value: 81.06565101416024
      - task:
          type: STS
        dataset:
          type: PhilipMay/stsb_multi_mt
          name: MTEB STSBenchmarkMultilingualSTS (en)
          config: en
          split: test
          revision: 93d57ef91790589e3ce9c365164337a8a78b7632
        metrics:
          - type: cos_sim_pearson
            value: 81.54104346197056
          - type: cos_sim_spearman
            value: 81.18789220331483
          - type: euclidean_pearson
            value: 81.58955451690102
          - type: euclidean_spearman
            value: 81.18789220331483
          - type: manhattan_pearson
            value: 81.47385630064072
          - type: manhattan_spearman
            value: 81.06565101416024
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 79.34107964300796
          - type: mrr
            value: 94.01917889662987
      - task:
          type: Retrieval
        dataset:
          type: mteb/scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: 0228b52cf27578f30900b9e5271d331663a030d7
        metrics:
          - type: map_at_1
            value: 55.928
          - type: map_at_10
            value: 65.443
          - type: map_at_100
            value: 66.067
          - type: map_at_1000
            value: 66.091
          - type: map_at_3
            value: 62.629999999999995
          - type: map_at_5
            value: 64.35
          - type: mrr_at_1
            value: 59
          - type: mrr_at_10
            value: 66.845
          - type: mrr_at_100
            value: 67.31899999999999
          - type: mrr_at_1000
            value: 67.342
          - type: mrr_at_3
            value: 64.61099999999999
          - type: mrr_at_5
            value: 66.044
          - type: ndcg_at_1
            value: 59
          - type: ndcg_at_10
            value: 69.921
          - type: ndcg_at_100
            value: 72.365
          - type: ndcg_at_1000
            value: 73.055
          - type: ndcg_at_3
            value: 65.086
          - type: ndcg_at_5
            value: 67.62700000000001
          - type: precision_at_1
            value: 59
          - type: precision_at_10
            value: 9.3
          - type: precision_at_100
            value: 1.057
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 25.333
          - type: precision_at_5
            value: 16.866999999999997
          - type: recall_at_1
            value: 55.928
          - type: recall_at_10
            value: 82.289
          - type: recall_at_100
            value: 92.833
          - type: recall_at_1000
            value: 98.333
          - type: recall_at_3
            value: 69.172
          - type: recall_at_5
            value: 75.628
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.81881188118813
          - type: cos_sim_ap
            value: 95.2776439040401
          - type: cos_sim_f1
            value: 90.74355083459787
          - type: cos_sim_precision
            value: 91.81166837256909
          - type: cos_sim_recall
            value: 89.7
          - type: dot_accuracy
            value: 99.81881188118813
          - type: dot_ap
            value: 95.27764092100406
          - type: dot_f1
            value: 90.74355083459787
          - type: dot_precision
            value: 91.81166837256909
          - type: dot_recall
            value: 89.7
          - type: euclidean_accuracy
            value: 99.81881188118813
          - type: euclidean_ap
            value: 95.27764091101388
          - type: euclidean_f1
            value: 90.74355083459787
          - type: euclidean_precision
            value: 91.81166837256909
          - type: euclidean_recall
            value: 89.7
          - type: manhattan_accuracy
            value: 99.82079207920792
          - type: manhattan_ap
            value: 95.25081634689418
          - type: manhattan_f1
            value: 90.75114971895759
          - type: manhattan_precision
            value: 92.78996865203762
          - type: manhattan_recall
            value: 88.8
          - type: max_accuracy
            value: 99.82079207920792
          - type: max_ap
            value: 95.2776439040401
          - type: max_f1
            value: 90.75114971895759
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 60.69855369728728
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 33.98191834367251
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 50.156163330429614
          - type: mrr
            value: 50.90145148968678
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 31.16938079808134
          - type: cos_sim_spearman
            value: 31.74655874538245
          - type: dot_pearson
            value: 31.169380299671705
          - type: dot_spearman
            value: 31.74655874538245
      - task:
          type: Retrieval
        dataset:
          type: mteb/trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
        metrics:
          - type: map_at_1
            value: 0.252
          - type: map_at_10
            value: 2.009
          - type: map_at_100
            value: 11.611
          - type: map_at_1000
            value: 27.811999999999998
          - type: map_at_3
            value: 0.685
          - type: map_at_5
            value: 1.08
          - type: mrr_at_1
            value: 94
          - type: mrr_at_10
            value: 97
          - type: mrr_at_100
            value: 97
          - type: mrr_at_1000
            value: 97
          - type: mrr_at_3
            value: 97
          - type: mrr_at_5
            value: 97
          - type: ndcg_at_1
            value: 88
          - type: ndcg_at_10
            value: 81.388
          - type: ndcg_at_100
            value: 60.629
          - type: ndcg_at_1000
            value: 52.38
          - type: ndcg_at_3
            value: 86.827
          - type: ndcg_at_5
            value: 84.597
          - type: precision_at_1
            value: 94
          - type: precision_at_10
            value: 85.8
          - type: precision_at_100
            value: 62.419999999999995
          - type: precision_at_1000
            value: 23.31
          - type: precision_at_3
            value: 90.667
          - type: precision_at_5
            value: 88.4
          - type: recall_at_1
            value: 0.252
          - type: recall_at_10
            value: 2.164
          - type: recall_at_100
            value: 14.613999999999999
          - type: recall_at_1000
            value: 48.730000000000004
          - type: recall_at_3
            value: 0.7020000000000001
          - type: recall_at_5
            value: 1.122
      - task:
          type: Retrieval
        dataset:
          type: mteb/touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
        metrics:
          - type: map_at_1
            value: 3.476
          - type: map_at_10
            value: 13.442000000000002
          - type: map_at_100
            value: 20.618
          - type: map_at_1000
            value: 22.175
          - type: map_at_3
            value: 6.968000000000001
          - type: map_at_5
            value: 9.214
          - type: mrr_at_1
            value: 44.897999999999996
          - type: mrr_at_10
            value: 56.77100000000001
          - type: mrr_at_100
            value: 57.226
          - type: mrr_at_1000
            value: 57.226
          - type: mrr_at_3
            value: 52.381
          - type: mrr_at_5
            value: 54.523999999999994
          - type: ndcg_at_1
            value: 42.857
          - type: ndcg_at_10
            value: 32.507999999999996
          - type: ndcg_at_100
            value: 43.614000000000004
          - type: ndcg_at_1000
            value: 53.82
          - type: ndcg_at_3
            value: 36.818
          - type: ndcg_at_5
            value: 33.346
          - type: precision_at_1
            value: 44.897999999999996
          - type: precision_at_10
            value: 28.571
          - type: precision_at_100
            value: 8.652999999999999
          - type: precision_at_1000
            value: 1.5709999999999997
          - type: precision_at_3
            value: 38.095
          - type: precision_at_5
            value: 32.245000000000005
          - type: recall_at_1
            value: 3.476
          - type: recall_at_10
            value: 20.827
          - type: recall_at_100
            value: 53.04299999999999
          - type: recall_at_1000
            value: 84.221
          - type: recall_at_3
            value: 8.200000000000001
          - type: recall_at_5
            value: 11.651
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
        metrics:
          - type: accuracy
            value: 61.96360000000001
          - type: ap
            value: 11.256160324436445
          - type: f1
            value: 48.07712827691349
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 58.90492359932088
          - type: f1
            value: 59.12542417513503
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 38.284935353315355
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 83.4714192048638
          - type: cos_sim_ap
            value: 65.77588263185375
          - type: cos_sim_f1
            value: 62.459508098380326
          - type: cos_sim_precision
            value: 57.27172717271727
          - type: cos_sim_recall
            value: 68.68073878627968
          - type: dot_accuracy
            value: 83.4714192048638
          - type: dot_ap
            value: 65.77588818364636
          - type: dot_f1
            value: 62.459508098380326
          - type: dot_precision
            value: 57.27172717271727
          - type: dot_recall
            value: 68.68073878627968
          - type: euclidean_accuracy
            value: 83.4714192048638
          - type: euclidean_ap
            value: 65.77587693431595
          - type: euclidean_f1
            value: 62.459508098380326
          - type: euclidean_precision
            value: 57.27172717271727
          - type: euclidean_recall
            value: 68.68073878627968
          - type: manhattan_accuracy
            value: 83.47737974608094
          - type: manhattan_ap
            value: 65.65957745829654
          - type: manhattan_f1
            value: 62.22760290556902
          - type: manhattan_precision
            value: 57.494407158836694
          - type: manhattan_recall
            value: 67.81002638522428
          - type: max_accuracy
            value: 83.47737974608094
          - type: max_ap
            value: 65.77588818364636
          - type: max_f1
            value: 62.459508098380326
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.64244964489463
          - type: cos_sim_ap
            value: 85.154122301394
          - type: cos_sim_f1
            value: 77.45617911327146
          - type: cos_sim_precision
            value: 74.23066064370413
          - type: cos_sim_recall
            value: 80.97474591931014
          - type: dot_accuracy
            value: 88.64244964489463
          - type: dot_ap
            value: 85.15411965587543
          - type: dot_f1
            value: 77.45617911327146
          - type: dot_precision
            value: 74.23066064370413
          - type: dot_recall
            value: 80.97474591931014
          - type: euclidean_accuracy
            value: 88.64244964489463
          - type: euclidean_ap
            value: 85.15414684113986
          - type: euclidean_f1
            value: 77.45617911327146
          - type: euclidean_precision
            value: 74.23066064370413
          - type: euclidean_recall
            value: 80.97474591931014
          - type: manhattan_accuracy
            value: 88.57841425078588
          - type: manhattan_ap
            value: 85.12472268567576
          - type: manhattan_f1
            value: 77.39497339937627
          - type: manhattan_precision
            value: 73.92584285413892
          - type: manhattan_recall
            value: 81.20572836464429
          - type: max_accuracy
            value: 88.64244964489463
          - type: max_ap
            value: 85.15414684113986
          - type: max_f1
            value: 77.45617911327146
      - task:
          type: Clustering
        dataset:
          type: jinaai/cities_wiki_clustering
          name: MTEB WikiCitiesClustering
          config: default
          split: test
          revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa
        metrics:
          - type: v_measure
            value: 79.58576208710117