spacemanidol commited on
Commit
dbbfacc
1 Parent(s): 4c013d9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2798 -0
README.md CHANGED
@@ -1,3 +1,2801 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
1
  ---
2
  license: apache-2.0
3
+ tags:
4
+ - mteb
5
+ model-index:
6
+ - name: tiny
7
+ results:
8
+ - task:
9
+ type: Classification
10
+ dataset:
11
+ type: mteb/amazon_counterfactual
12
+ name: MTEB AmazonCounterfactualClassification (en)
13
+ config: en
14
+ split: test
15
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
16
+ metrics:
17
+ - type: accuracy
18
+ value: 65.08955223880598
19
+ - type: ap
20
+ value: 28.514291209445364
21
+ - type: f1
22
+ value: 59.2604580112738
23
+ - task:
24
+ type: Classification
25
+ dataset:
26
+ type: mteb/amazon_polarity
27
+ name: MTEB AmazonPolarityClassification
28
+ config: default
29
+ split: test
30
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
31
+ metrics:
32
+ - type: accuracy
33
+ value: 70.035375
34
+ - type: ap
35
+ value: 64.29444264250405
36
+ - type: f1
37
+ value: 69.78382333907138
38
+ - task:
39
+ type: Classification
40
+ dataset:
41
+ type: mteb/amazon_reviews_multi
42
+ name: MTEB AmazonReviewsClassification (en)
43
+ config: en
44
+ split: test
45
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
46
+ metrics:
47
+ - type: accuracy
48
+ value: 35.343999999999994
49
+ - type: f1
50
+ value: 34.69618251902858
51
+ - task:
52
+ type: Retrieval
53
+ dataset:
54
+ type: mteb/arguana
55
+ name: MTEB ArguAna
56
+ config: default
57
+ split: test
58
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
59
+ metrics:
60
+ - type: map_at_1
61
+ value: 28.592000000000002
62
+ - type: map_at_10
63
+ value: 43.597
64
+ - type: map_at_100
65
+ value: 44.614
66
+ - type: map_at_1000
67
+ value: 44.624
68
+ - type: map_at_3
69
+ value: 38.928000000000004
70
+ - type: map_at_5
71
+ value: 41.453
72
+ - type: mrr_at_1
73
+ value: 29.232000000000003
74
+ - type: mrr_at_10
75
+ value: 43.829
76
+ - type: mrr_at_100
77
+ value: 44.852
78
+ - type: mrr_at_1000
79
+ value: 44.862
80
+ - type: mrr_at_3
81
+ value: 39.118
82
+ - type: mrr_at_5
83
+ value: 41.703
84
+ - type: ndcg_at_1
85
+ value: 28.592000000000002
86
+ - type: ndcg_at_10
87
+ value: 52.081
88
+ - type: ndcg_at_100
89
+ value: 56.37
90
+ - type: ndcg_at_1000
91
+ value: 56.598000000000006
92
+ - type: ndcg_at_3
93
+ value: 42.42
94
+ - type: ndcg_at_5
95
+ value: 46.965
96
+ - type: precision_at_1
97
+ value: 28.592000000000002
98
+ - type: precision_at_10
99
+ value: 7.922999999999999
100
+ - type: precision_at_100
101
+ value: 0.979
102
+ - type: precision_at_1000
103
+ value: 0.1
104
+ - type: precision_at_3
105
+ value: 17.52
106
+ - type: precision_at_5
107
+ value: 12.717
108
+ - type: recall_at_1
109
+ value: 28.592000000000002
110
+ - type: recall_at_10
111
+ value: 79.232
112
+ - type: recall_at_100
113
+ value: 97.866
114
+ - type: recall_at_1000
115
+ value: 99.57300000000001
116
+ - type: recall_at_3
117
+ value: 52.559999999999995
118
+ - type: recall_at_5
119
+ value: 63.585
120
+ - task:
121
+ type: Clustering
122
+ dataset:
123
+ type: mteb/arxiv-clustering-p2p
124
+ name: MTEB ArxivClusteringP2P
125
+ config: default
126
+ split: test
127
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
128
+ metrics:
129
+ - type: v_measure
130
+ value: 43.50220588953974
131
+ - task:
132
+ type: Clustering
133
+ dataset:
134
+ type: mteb/arxiv-clustering-s2s
135
+ name: MTEB ArxivClusteringS2S
136
+ config: default
137
+ split: test
138
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
139
+ metrics:
140
+ - type: v_measure
141
+ value: 32.08725826118282
142
+ - task:
143
+ type: Reranking
144
+ dataset:
145
+ type: mteb/askubuntudupquestions-reranking
146
+ name: MTEB AskUbuntuDupQuestions
147
+ config: default
148
+ split: test
149
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
150
+ metrics:
151
+ - type: map
152
+ value: 60.25381587694928
153
+ - type: mrr
154
+ value: 73.79776194873148
155
+ - task:
156
+ type: STS
157
+ dataset:
158
+ type: mteb/biosses-sts
159
+ name: MTEB BIOSSES
160
+ config: default
161
+ split: test
162
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
163
+ metrics:
164
+ - type: cos_sim_pearson
165
+ value: 85.47489332445278
166
+ - type: cos_sim_spearman
167
+ value: 84.05432487336698
168
+ - type: euclidean_pearson
169
+ value: 84.5108222177219
170
+ - type: euclidean_spearman
171
+ value: 84.05432487336698
172
+ - type: manhattan_pearson
173
+ value: 84.20440618321464
174
+ - type: manhattan_spearman
175
+ value: 83.9290208134097
176
+ - task:
177
+ type: Classification
178
+ dataset:
179
+ type: mteb/banking77
180
+ name: MTEB Banking77Classification
181
+ config: default
182
+ split: test
183
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
184
+ metrics:
185
+ - type: accuracy
186
+ value: 76.37337662337663
187
+ - type: f1
188
+ value: 75.33296834885043
189
+ - task:
190
+ type: Clustering
191
+ dataset:
192
+ type: jinaai/big-patent-clustering
193
+ name: MTEB BigPatentClustering
194
+ config: default
195
+ split: test
196
+ revision: 62d5330920bca426ce9d3c76ea914f15fc83e891
197
+ metrics:
198
+ - type: v_measure
199
+ value: 21.31174373264835
200
+ - task:
201
+ type: Clustering
202
+ dataset:
203
+ type: mteb/biorxiv-clustering-p2p
204
+ name: MTEB BiorxivClusteringP2P
205
+ config: default
206
+ split: test
207
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
208
+ metrics:
209
+ - type: v_measure
210
+ value: 34.481973521597844
211
+ - task:
212
+ type: Clustering
213
+ dataset:
214
+ type: mteb/biorxiv-clustering-s2s
215
+ name: MTEB BiorxivClusteringS2S
216
+ config: default
217
+ split: test
218
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
219
+ metrics:
220
+ - type: v_measure
221
+ value: 26.14094256567341
222
+ - task:
223
+ type: Retrieval
224
+ dataset:
225
+ type: mteb/cqadupstack-android
226
+ name: MTEB CQADupstackAndroidRetrieval
227
+ config: default
228
+ split: test
229
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
230
+ metrics:
231
+ - type: map_at_1
232
+ value: 32.527
233
+ - type: map_at_10
234
+ value: 43.699
235
+ - type: map_at_100
236
+ value: 45.03
237
+ - type: map_at_1000
238
+ value: 45.157000000000004
239
+ - type: map_at_3
240
+ value: 39.943
241
+ - type: map_at_5
242
+ value: 42.324
243
+ - type: mrr_at_1
244
+ value: 39.771
245
+ - type: mrr_at_10
246
+ value: 49.277
247
+ - type: mrr_at_100
248
+ value: 49.956
249
+ - type: mrr_at_1000
250
+ value: 50.005
251
+ - type: mrr_at_3
252
+ value: 46.304
253
+ - type: mrr_at_5
254
+ value: 48.493
255
+ - type: ndcg_at_1
256
+ value: 39.771
257
+ - type: ndcg_at_10
258
+ value: 49.957
259
+ - type: ndcg_at_100
260
+ value: 54.678000000000004
261
+ - type: ndcg_at_1000
262
+ value: 56.751
263
+ - type: ndcg_at_3
264
+ value: 44.608
265
+ - type: ndcg_at_5
266
+ value: 47.687000000000005
267
+ - type: precision_at_1
268
+ value: 39.771
269
+ - type: precision_at_10
270
+ value: 9.557
271
+ - type: precision_at_100
272
+ value: 1.5010000000000001
273
+ - type: precision_at_1000
274
+ value: 0.194
275
+ - type: precision_at_3
276
+ value: 21.173000000000002
277
+ - type: precision_at_5
278
+ value: 15.794
279
+ - type: recall_at_1
280
+ value: 32.527
281
+ - type: recall_at_10
282
+ value: 61.791
283
+ - type: recall_at_100
284
+ value: 81.49300000000001
285
+ - type: recall_at_1000
286
+ value: 95.014
287
+ - type: recall_at_3
288
+ value: 46.605000000000004
289
+ - type: recall_at_5
290
+ value: 54.83
291
+ - task:
292
+ type: Retrieval
293
+ dataset:
294
+ type: mteb/cqadupstack-english
295
+ name: MTEB CQADupstackEnglishRetrieval
296
+ config: default
297
+ split: test
298
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
299
+ metrics:
300
+ - type: map_at_1
301
+ value: 29.424
302
+ - type: map_at_10
303
+ value: 38.667
304
+ - type: map_at_100
305
+ value: 39.771
306
+ - type: map_at_1000
307
+ value: 39.899
308
+ - type: map_at_3
309
+ value: 35.91
310
+ - type: map_at_5
311
+ value: 37.45
312
+ - type: mrr_at_1
313
+ value: 36.687999999999995
314
+ - type: mrr_at_10
315
+ value: 44.673
316
+ - type: mrr_at_100
317
+ value: 45.289
318
+ - type: mrr_at_1000
319
+ value: 45.338
320
+ - type: mrr_at_3
321
+ value: 42.601
322
+ - type: mrr_at_5
323
+ value: 43.875
324
+ - type: ndcg_at_1
325
+ value: 36.687999999999995
326
+ - type: ndcg_at_10
327
+ value: 44.013000000000005
328
+ - type: ndcg_at_100
329
+ value: 48.13
330
+ - type: ndcg_at_1000
331
+ value: 50.294000000000004
332
+ - type: ndcg_at_3
333
+ value: 40.056999999999995
334
+ - type: ndcg_at_5
335
+ value: 41.902
336
+ - type: precision_at_1
337
+ value: 36.687999999999995
338
+ - type: precision_at_10
339
+ value: 8.158999999999999
340
+ - type: precision_at_100
341
+ value: 1.321
342
+ - type: precision_at_1000
343
+ value: 0.179
344
+ - type: precision_at_3
345
+ value: 19.045
346
+ - type: precision_at_5
347
+ value: 13.427
348
+ - type: recall_at_1
349
+ value: 29.424
350
+ - type: recall_at_10
351
+ value: 53.08500000000001
352
+ - type: recall_at_100
353
+ value: 70.679
354
+ - type: recall_at_1000
355
+ value: 84.66
356
+ - type: recall_at_3
357
+ value: 41.399
358
+ - type: recall_at_5
359
+ value: 46.632
360
+ - task:
361
+ type: Retrieval
362
+ dataset:
363
+ type: mteb/cqadupstack-gaming
364
+ name: MTEB CQADupstackGamingRetrieval
365
+ config: default
366
+ split: test
367
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
368
+ metrics:
369
+ - type: map_at_1
370
+ value: 39.747
371
+ - type: map_at_10
372
+ value: 51.452
373
+ - type: map_at_100
374
+ value: 52.384
375
+ - type: map_at_1000
376
+ value: 52.437
377
+ - type: map_at_3
378
+ value: 48.213
379
+ - type: map_at_5
380
+ value: 50.195
381
+ - type: mrr_at_1
382
+ value: 45.391999999999996
383
+ - type: mrr_at_10
384
+ value: 54.928
385
+ - type: mrr_at_100
386
+ value: 55.532000000000004
387
+ - type: mrr_at_1000
388
+ value: 55.565
389
+ - type: mrr_at_3
390
+ value: 52.456
391
+ - type: mrr_at_5
392
+ value: 54.054
393
+ - type: ndcg_at_1
394
+ value: 45.391999999999996
395
+ - type: ndcg_at_10
396
+ value: 57.055
397
+ - type: ndcg_at_100
398
+ value: 60.751999999999995
399
+ - type: ndcg_at_1000
400
+ value: 61.864
401
+ - type: ndcg_at_3
402
+ value: 51.662
403
+ - type: ndcg_at_5
404
+ value: 54.613
405
+ - type: precision_at_1
406
+ value: 45.391999999999996
407
+ - type: precision_at_10
408
+ value: 9.103
409
+ - type: precision_at_100
410
+ value: 1.1780000000000002
411
+ - type: precision_at_1000
412
+ value: 0.132
413
+ - type: precision_at_3
414
+ value: 22.717000000000002
415
+ - type: precision_at_5
416
+ value: 15.812000000000001
417
+ - type: recall_at_1
418
+ value: 39.747
419
+ - type: recall_at_10
420
+ value: 70.10499999999999
421
+ - type: recall_at_100
422
+ value: 86.23100000000001
423
+ - type: recall_at_1000
424
+ value: 94.025
425
+ - type: recall_at_3
426
+ value: 55.899
427
+ - type: recall_at_5
428
+ value: 63.05500000000001
429
+ - task:
430
+ type: Retrieval
431
+ dataset:
432
+ type: mteb/cqadupstack-gis
433
+ name: MTEB CQADupstackGisRetrieval
434
+ config: default
435
+ split: test
436
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
437
+ metrics:
438
+ - type: map_at_1
439
+ value: 27.168999999999997
440
+ - type: map_at_10
441
+ value: 34.975
442
+ - type: map_at_100
443
+ value: 35.94
444
+ - type: map_at_1000
445
+ value: 36.021
446
+ - type: map_at_3
447
+ value: 32.35
448
+ - type: map_at_5
449
+ value: 33.831
450
+ - type: mrr_at_1
451
+ value: 28.701
452
+ - type: mrr_at_10
453
+ value: 36.698
454
+ - type: mrr_at_100
455
+ value: 37.546
456
+ - type: mrr_at_1000
457
+ value: 37.613
458
+ - type: mrr_at_3
459
+ value: 34.256
460
+ - type: mrr_at_5
461
+ value: 35.685
462
+ - type: ndcg_at_1
463
+ value: 28.701
464
+ - type: ndcg_at_10
465
+ value: 39.639
466
+ - type: ndcg_at_100
467
+ value: 44.389
468
+ - type: ndcg_at_1000
469
+ value: 46.46
470
+ - type: ndcg_at_3
471
+ value: 34.52
472
+ - type: ndcg_at_5
473
+ value: 37.076
474
+ - type: precision_at_1
475
+ value: 28.701
476
+ - type: precision_at_10
477
+ value: 5.955
478
+ - type: precision_at_100
479
+ value: 0.8880000000000001
480
+ - type: precision_at_1000
481
+ value: 0.109
482
+ - type: precision_at_3
483
+ value: 14.274999999999999
484
+ - type: precision_at_5
485
+ value: 10.011000000000001
486
+ - type: recall_at_1
487
+ value: 27.168999999999997
488
+ - type: recall_at_10
489
+ value: 52.347
490
+ - type: recall_at_100
491
+ value: 74.1
492
+ - type: recall_at_1000
493
+ value: 89.739
494
+ - type: recall_at_3
495
+ value: 38.567
496
+ - type: recall_at_5
497
+ value: 44.767
498
+ - task:
499
+ type: Retrieval
500
+ dataset:
501
+ type: mteb/cqadupstack-mathematica
502
+ name: MTEB CQADupstackMathematicaRetrieval
503
+ config: default
504
+ split: test
505
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
506
+ metrics:
507
+ - type: map_at_1
508
+ value: 15.872
509
+ - type: map_at_10
510
+ value: 23.153000000000002
511
+ - type: map_at_100
512
+ value: 24.311
513
+ - type: map_at_1000
514
+ value: 24.432000000000002
515
+ - type: map_at_3
516
+ value: 20.707
517
+ - type: map_at_5
518
+ value: 21.921
519
+ - type: mrr_at_1
520
+ value: 19.776
521
+ - type: mrr_at_10
522
+ value: 27.755999999999997
523
+ - type: mrr_at_100
524
+ value: 28.709
525
+ - type: mrr_at_1000
526
+ value: 28.778
527
+ - type: mrr_at_3
528
+ value: 25.186999999999998
529
+ - type: mrr_at_5
530
+ value: 26.43
531
+ - type: ndcg_at_1
532
+ value: 19.776
533
+ - type: ndcg_at_10
534
+ value: 28.288999999999998
535
+ - type: ndcg_at_100
536
+ value: 34.011
537
+ - type: ndcg_at_1000
538
+ value: 36.916
539
+ - type: ndcg_at_3
540
+ value: 23.551
541
+ - type: ndcg_at_5
542
+ value: 25.429000000000002
543
+ - type: precision_at_1
544
+ value: 19.776
545
+ - type: precision_at_10
546
+ value: 5.311
547
+ - type: precision_at_100
548
+ value: 0.9440000000000001
549
+ - type: precision_at_1000
550
+ value: 0.132
551
+ - type: precision_at_3
552
+ value: 11.360000000000001
553
+ - type: precision_at_5
554
+ value: 8.209
555
+ - type: recall_at_1
556
+ value: 15.872
557
+ - type: recall_at_10
558
+ value: 39.726
559
+ - type: recall_at_100
560
+ value: 65.035
561
+ - type: recall_at_1000
562
+ value: 85.846
563
+ - type: recall_at_3
564
+ value: 26.432
565
+ - type: recall_at_5
566
+ value: 31.22
567
+ - task:
568
+ type: Retrieval
569
+ dataset:
570
+ type: mteb/cqadupstack-physics
571
+ name: MTEB CQADupstackPhysicsRetrieval
572
+ config: default
573
+ split: test
574
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
575
+ metrics:
576
+ - type: map_at_1
577
+ value: 28.126
578
+ - type: map_at_10
579
+ value: 37.537
580
+ - type: map_at_100
581
+ value: 38.807
582
+ - type: map_at_1000
583
+ value: 38.923
584
+ - type: map_at_3
585
+ value: 34.65
586
+ - type: map_at_5
587
+ value: 36.248000000000005
588
+ - type: mrr_at_1
589
+ value: 34.649
590
+ - type: mrr_at_10
591
+ value: 42.893
592
+ - type: mrr_at_100
593
+ value: 43.721
594
+ - type: mrr_at_1000
595
+ value: 43.775999999999996
596
+ - type: mrr_at_3
597
+ value: 40.488
598
+ - type: mrr_at_5
599
+ value: 41.729
600
+ - type: ndcg_at_1
601
+ value: 34.649
602
+ - type: ndcg_at_10
603
+ value: 43.072
604
+ - type: ndcg_at_100
605
+ value: 48.464
606
+ - type: ndcg_at_1000
607
+ value: 50.724000000000004
608
+ - type: ndcg_at_3
609
+ value: 38.506
610
+ - type: ndcg_at_5
611
+ value: 40.522000000000006
612
+ - type: precision_at_1
613
+ value: 34.649
614
+ - type: precision_at_10
615
+ value: 7.68
616
+ - type: precision_at_100
617
+ value: 1.214
618
+ - type: precision_at_1000
619
+ value: 0.16
620
+ - type: precision_at_3
621
+ value: 18.029999999999998
622
+ - type: precision_at_5
623
+ value: 12.666
624
+ - type: recall_at_1
625
+ value: 28.126
626
+ - type: recall_at_10
627
+ value: 54.396
628
+ - type: recall_at_100
629
+ value: 76.988
630
+ - type: recall_at_1000
631
+ value: 91.85799999999999
632
+ - type: recall_at_3
633
+ value: 41.169
634
+ - type: recall_at_5
635
+ value: 46.658
636
+ - task:
637
+ type: Retrieval
638
+ dataset:
639
+ type: mteb/cqadupstack-programmers
640
+ name: MTEB CQADupstackProgrammersRetrieval
641
+ config: default
642
+ split: test
643
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
644
+ metrics:
645
+ - type: map_at_1
646
+ value: 26.68
647
+ - type: map_at_10
648
+ value: 35.702
649
+ - type: map_at_100
650
+ value: 36.864999999999995
651
+ - type: map_at_1000
652
+ value: 36.977
653
+ - type: map_at_3
654
+ value: 32.828
655
+ - type: map_at_5
656
+ value: 34.481
657
+ - type: mrr_at_1
658
+ value: 32.991
659
+ - type: mrr_at_10
660
+ value: 40.993
661
+ - type: mrr_at_100
662
+ value: 41.827
663
+ - type: mrr_at_1000
664
+ value: 41.887
665
+ - type: mrr_at_3
666
+ value: 38.623000000000005
667
+ - type: mrr_at_5
668
+ value: 40.021
669
+ - type: ndcg_at_1
670
+ value: 32.991
671
+ - type: ndcg_at_10
672
+ value: 41.036
673
+ - type: ndcg_at_100
674
+ value: 46.294000000000004
675
+ - type: ndcg_at_1000
676
+ value: 48.644
677
+ - type: ndcg_at_3
678
+ value: 36.419000000000004
679
+ - type: ndcg_at_5
680
+ value: 38.618
681
+ - type: precision_at_1
682
+ value: 32.991
683
+ - type: precision_at_10
684
+ value: 7.385999999999999
685
+ - type: precision_at_100
686
+ value: 1.176
687
+ - type: precision_at_1000
688
+ value: 0.151
689
+ - type: precision_at_3
690
+ value: 17.122999999999998
691
+ - type: precision_at_5
692
+ value: 12.215
693
+ - type: recall_at_1
694
+ value: 26.68
695
+ - type: recall_at_10
696
+ value: 51.644
697
+ - type: recall_at_100
698
+ value: 74.55000000000001
699
+ - type: recall_at_1000
700
+ value: 90.825
701
+ - type: recall_at_3
702
+ value: 38.579
703
+ - type: recall_at_5
704
+ value: 44.512
705
+ - task:
706
+ type: Retrieval
707
+ dataset:
708
+ type: mteb/cqadupstack
709
+ name: MTEB CQADupstackRetrieval
710
+ config: default
711
+ split: test
712
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
713
+ metrics:
714
+ - type: map_at_1
715
+ value: 26.30825
716
+ - type: map_at_10
717
+ value: 34.97866666666666
718
+ - type: map_at_100
719
+ value: 36.109249999999996
720
+ - type: map_at_1000
721
+ value: 36.22508333333333
722
+ - type: map_at_3
723
+ value: 32.239083333333326
724
+ - type: map_at_5
725
+ value: 33.75933333333334
726
+ - type: mrr_at_1
727
+ value: 31.05308333333333
728
+ - type: mrr_at_10
729
+ value: 39.099833333333336
730
+ - type: mrr_at_100
731
+ value: 39.92008333333334
732
+ - type: mrr_at_1000
733
+ value: 39.980000000000004
734
+ - type: mrr_at_3
735
+ value: 36.75958333333333
736
+ - type: mrr_at_5
737
+ value: 38.086416666666665
738
+ - type: ndcg_at_1
739
+ value: 31.05308333333333
740
+ - type: ndcg_at_10
741
+ value: 40.11558333333334
742
+ - type: ndcg_at_100
743
+ value: 45.05966666666667
744
+ - type: ndcg_at_1000
745
+ value: 47.36516666666667
746
+ - type: ndcg_at_3
747
+ value: 35.490833333333335
748
+ - type: ndcg_at_5
749
+ value: 37.64541666666666
750
+ - type: precision_at_1
751
+ value: 31.05308333333333
752
+ - type: precision_at_10
753
+ value: 6.968416666666666
754
+ - type: precision_at_100
755
+ value: 1.1156666666666666
756
+ - type: precision_at_1000
757
+ value: 0.14950000000000002
758
+ - type: precision_at_3
759
+ value: 16.123
760
+ - type: precision_at_5
761
+ value: 11.451166666666666
762
+ - type: recall_at_1
763
+ value: 26.30825
764
+ - type: recall_at_10
765
+ value: 51.19283333333333
766
+ - type: recall_at_100
767
+ value: 73.0285
768
+ - type: recall_at_1000
769
+ value: 89.11133333333333
770
+ - type: recall_at_3
771
+ value: 38.26208333333333
772
+ - type: recall_at_5
773
+ value: 43.855916666666666
774
+ - task:
775
+ type: Retrieval
776
+ dataset:
777
+ type: mteb/cqadupstack-stats
778
+ name: MTEB CQADupstackStatsRetrieval
779
+ config: default
780
+ split: test
781
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
782
+ metrics:
783
+ - type: map_at_1
784
+ value: 23.363999999999997
785
+ - type: map_at_10
786
+ value: 30.606
787
+ - type: map_at_100
788
+ value: 31.491999999999997
789
+ - type: map_at_1000
790
+ value: 31.578
791
+ - type: map_at_3
792
+ value: 28.610000000000003
793
+ - type: map_at_5
794
+ value: 29.602
795
+ - type: mrr_at_1
796
+ value: 26.38
797
+ - type: mrr_at_10
798
+ value: 33.472
799
+ - type: mrr_at_100
800
+ value: 34.299
801
+ - type: mrr_at_1000
802
+ value: 34.361999999999995
803
+ - type: mrr_at_3
804
+ value: 31.696999999999996
805
+ - type: mrr_at_5
806
+ value: 32.503
807
+ - type: ndcg_at_1
808
+ value: 26.38
809
+ - type: ndcg_at_10
810
+ value: 34.772999999999996
811
+ - type: ndcg_at_100
812
+ value: 39.334
813
+ - type: ndcg_at_1000
814
+ value: 41.676
815
+ - type: ndcg_at_3
816
+ value: 31.097
817
+ - type: ndcg_at_5
818
+ value: 32.561
819
+ - type: precision_at_1
820
+ value: 26.38
821
+ - type: precision_at_10
822
+ value: 5.475
823
+ - type: precision_at_100
824
+ value: 0.84
825
+ - type: precision_at_1000
826
+ value: 0.11100000000000002
827
+ - type: precision_at_3
828
+ value: 13.395000000000001
829
+ - type: precision_at_5
830
+ value: 9.11
831
+ - type: recall_at_1
832
+ value: 23.363999999999997
833
+ - type: recall_at_10
834
+ value: 44.656
835
+ - type: recall_at_100
836
+ value: 65.77199999999999
837
+ - type: recall_at_1000
838
+ value: 83.462
839
+ - type: recall_at_3
840
+ value: 34.213
841
+ - type: recall_at_5
842
+ value: 38.091
843
+ - task:
844
+ type: Retrieval
845
+ dataset:
846
+ type: mteb/cqadupstack-tex
847
+ name: MTEB CQADupstackTexRetrieval
848
+ config: default
849
+ split: test
850
+ revision: 46989137a86843e03a6195de44b09deda022eec7
851
+ metrics:
852
+ - type: map_at_1
853
+ value: 17.971999999999998
854
+ - type: map_at_10
855
+ value: 24.913
856
+ - type: map_at_100
857
+ value: 25.916
858
+ - type: map_at_1000
859
+ value: 26.049
860
+ - type: map_at_3
861
+ value: 22.569
862
+ - type: map_at_5
863
+ value: 23.858999999999998
864
+ - type: mrr_at_1
865
+ value: 21.748
866
+ - type: mrr_at_10
867
+ value: 28.711
868
+ - type: mrr_at_100
869
+ value: 29.535
870
+ - type: mrr_at_1000
871
+ value: 29.621
872
+ - type: mrr_at_3
873
+ value: 26.484999999999996
874
+ - type: mrr_at_5
875
+ value: 27.701999999999998
876
+ - type: ndcg_at_1
877
+ value: 21.748
878
+ - type: ndcg_at_10
879
+ value: 29.412
880
+ - type: ndcg_at_100
881
+ value: 34.204
882
+ - type: ndcg_at_1000
883
+ value: 37.358000000000004
884
+ - type: ndcg_at_3
885
+ value: 25.202
886
+ - type: ndcg_at_5
887
+ value: 27.128000000000004
888
+ - type: precision_at_1
889
+ value: 21.748
890
+ - type: precision_at_10
891
+ value: 5.279
892
+ - type: precision_at_100
893
+ value: 0.902
894
+ - type: precision_at_1000
895
+ value: 0.135
896
+ - type: precision_at_3
897
+ value: 11.551
898
+ - type: precision_at_5
899
+ value: 8.437999999999999
900
+ - type: recall_at_1
901
+ value: 17.971999999999998
902
+ - type: recall_at_10
903
+ value: 39.186
904
+ - type: recall_at_100
905
+ value: 60.785999999999994
906
+ - type: recall_at_1000
907
+ value: 83.372
908
+ - type: recall_at_3
909
+ value: 27.584999999999997
910
+ - type: recall_at_5
911
+ value: 32.448
912
+ - task:
913
+ type: Retrieval
914
+ dataset:
915
+ type: mteb/cqadupstack-unix
916
+ name: MTEB CQADupstackUnixRetrieval
917
+ config: default
918
+ split: test
919
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
920
+ metrics:
921
+ - type: map_at_1
922
+ value: 26.684
923
+ - type: map_at_10
924
+ value: 35.188
925
+ - type: map_at_100
926
+ value: 36.379
927
+ - type: map_at_1000
928
+ value: 36.481
929
+ - type: map_at_3
930
+ value: 32.401
931
+ - type: map_at_5
932
+ value: 34.132
933
+ - type: mrr_at_1
934
+ value: 31.063000000000002
935
+ - type: mrr_at_10
936
+ value: 39.104
937
+ - type: mrr_at_100
938
+ value: 40.062999999999995
939
+ - type: mrr_at_1000
940
+ value: 40.119
941
+ - type: mrr_at_3
942
+ value: 36.692
943
+ - type: mrr_at_5
944
+ value: 38.161
945
+ - type: ndcg_at_1
946
+ value: 31.063000000000002
947
+ - type: ndcg_at_10
948
+ value: 40.096
949
+ - type: ndcg_at_100
950
+ value: 45.616
951
+ - type: ndcg_at_1000
952
+ value: 47.869
953
+ - type: ndcg_at_3
954
+ value: 35.256
955
+ - type: ndcg_at_5
956
+ value: 37.826
957
+ - type: precision_at_1
958
+ value: 31.063000000000002
959
+ - type: precision_at_10
960
+ value: 6.622999999999999
961
+ - type: precision_at_100
962
+ value: 1.046
963
+ - type: precision_at_1000
964
+ value: 0.135
965
+ - type: precision_at_3
966
+ value: 15.641
967
+ - type: precision_at_5
968
+ value: 11.231
969
+ - type: recall_at_1
970
+ value: 26.684
971
+ - type: recall_at_10
972
+ value: 51.092999999999996
973
+ - type: recall_at_100
974
+ value: 75.099
975
+ - type: recall_at_1000
976
+ value: 90.644
977
+ - type: recall_at_3
978
+ value: 38.063
979
+ - type: recall_at_5
980
+ value: 44.518
981
+ - task:
982
+ type: Retrieval
983
+ dataset:
984
+ type: mteb/cqadupstack-webmasters
985
+ name: MTEB CQADupstackWebmastersRetrieval
986
+ config: default
987
+ split: test
988
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
989
+ metrics:
990
+ - type: map_at_1
991
+ value: 26.249
992
+ - type: map_at_10
993
+ value: 34.694
994
+ - type: map_at_100
995
+ value: 36.208
996
+ - type: map_at_1000
997
+ value: 36.443
998
+ - type: map_at_3
999
+ value: 31.868000000000002
1000
+ - type: map_at_5
1001
+ value: 33.018
1002
+ - type: mrr_at_1
1003
+ value: 31.818
1004
+ - type: mrr_at_10
1005
+ value: 39.416000000000004
1006
+ - type: mrr_at_100
1007
+ value: 40.327
1008
+ - type: mrr_at_1000
1009
+ value: 40.388000000000005
1010
+ - type: mrr_at_3
1011
+ value: 37.120999999999995
1012
+ - type: mrr_at_5
1013
+ value: 38.07
1014
+ - type: ndcg_at_1
1015
+ value: 31.818
1016
+ - type: ndcg_at_10
1017
+ value: 40.405
1018
+ - type: ndcg_at_100
1019
+ value: 45.816
1020
+ - type: ndcg_at_1000
1021
+ value: 48.403
1022
+ - type: ndcg_at_3
1023
+ value: 35.823
1024
+ - type: ndcg_at_5
1025
+ value: 37.191
1026
+ - type: precision_at_1
1027
+ value: 31.818
1028
+ - type: precision_at_10
1029
+ value: 7.806
1030
+ - type: precision_at_100
1031
+ value: 1.518
1032
+ - type: precision_at_1000
1033
+ value: 0.241
1034
+ - type: precision_at_3
1035
+ value: 16.535
1036
+ - type: precision_at_5
1037
+ value: 11.738999999999999
1038
+ - type: recall_at_1
1039
+ value: 26.249
1040
+ - type: recall_at_10
1041
+ value: 50.928
1042
+ - type: recall_at_100
1043
+ value: 75.271
1044
+ - type: recall_at_1000
1045
+ value: 91.535
1046
+ - type: recall_at_3
1047
+ value: 37.322
1048
+ - type: recall_at_5
1049
+ value: 41.318
1050
+ - task:
1051
+ type: Retrieval
1052
+ dataset:
1053
+ type: mteb/cqadupstack-wordpress
1054
+ name: MTEB CQADupstackWordpressRetrieval
1055
+ config: default
1056
+ split: test
1057
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1058
+ metrics:
1059
+ - type: map_at_1
1060
+ value: 21.884999999999998
1061
+ - type: map_at_10
1062
+ value: 29.158
1063
+ - type: map_at_100
1064
+ value: 30.208000000000002
1065
+ - type: map_at_1000
1066
+ value: 30.304
1067
+ - type: map_at_3
1068
+ value: 26.82
1069
+ - type: map_at_5
1070
+ value: 28.051
1071
+ - type: mrr_at_1
1072
+ value: 23.66
1073
+ - type: mrr_at_10
1074
+ value: 31.277
1075
+ - type: mrr_at_100
1076
+ value: 32.237
1077
+ - type: mrr_at_1000
1078
+ value: 32.308
1079
+ - type: mrr_at_3
1080
+ value: 29.205
1081
+ - type: mrr_at_5
1082
+ value: 30.314000000000004
1083
+ - type: ndcg_at_1
1084
+ value: 23.66
1085
+ - type: ndcg_at_10
1086
+ value: 33.64
1087
+ - type: ndcg_at_100
1088
+ value: 39.028
1089
+ - type: ndcg_at_1000
1090
+ value: 41.423
1091
+ - type: ndcg_at_3
1092
+ value: 29.189
1093
+ - type: ndcg_at_5
1094
+ value: 31.191999999999997
1095
+ - type: precision_at_1
1096
+ value: 23.66
1097
+ - type: precision_at_10
1098
+ value: 5.287
1099
+ - type: precision_at_100
1100
+ value: 0.86
1101
+ - type: precision_at_1000
1102
+ value: 0.11499999999999999
1103
+ - type: precision_at_3
1104
+ value: 12.631
1105
+ - type: precision_at_5
1106
+ value: 8.762
1107
+ - type: recall_at_1
1108
+ value: 21.884999999999998
1109
+ - type: recall_at_10
1110
+ value: 45.357
1111
+ - type: recall_at_100
1112
+ value: 70.338
1113
+ - type: recall_at_1000
1114
+ value: 88.356
1115
+ - type: recall_at_3
1116
+ value: 33.312000000000005
1117
+ - type: recall_at_5
1118
+ value: 38.222
1119
+ - task:
1120
+ type: Retrieval
1121
+ dataset:
1122
+ type: mteb/climate-fever
1123
+ name: MTEB ClimateFEVER
1124
+ config: default
1125
+ split: test
1126
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1127
+ metrics:
1128
+ - type: map_at_1
1129
+ value: 13.058
1130
+ - type: map_at_10
1131
+ value: 21.549
1132
+ - type: map_at_100
1133
+ value: 23.287
1134
+ - type: map_at_1000
1135
+ value: 23.444000000000003
1136
+ - type: map_at_3
1137
+ value: 18.18
1138
+ - type: map_at_5
1139
+ value: 19.886
1140
+ - type: mrr_at_1
1141
+ value: 28.73
1142
+ - type: mrr_at_10
1143
+ value: 40.014
1144
+ - type: mrr_at_100
1145
+ value: 40.827000000000005
1146
+ - type: mrr_at_1000
1147
+ value: 40.866
1148
+ - type: mrr_at_3
1149
+ value: 36.602000000000004
1150
+ - type: mrr_at_5
1151
+ value: 38.702
1152
+ - type: ndcg_at_1
1153
+ value: 28.73
1154
+ - type: ndcg_at_10
1155
+ value: 29.881
1156
+ - type: ndcg_at_100
1157
+ value: 36.662
1158
+ - type: ndcg_at_1000
1159
+ value: 39.641999999999996
1160
+ - type: ndcg_at_3
1161
+ value: 24.661
1162
+ - type: ndcg_at_5
1163
+ value: 26.548
1164
+ - type: precision_at_1
1165
+ value: 28.73
1166
+ - type: precision_at_10
1167
+ value: 9.094
1168
+ - type: precision_at_100
1169
+ value: 1.6480000000000001
1170
+ - type: precision_at_1000
1171
+ value: 0.22100000000000003
1172
+ - type: precision_at_3
1173
+ value: 17.98
1174
+ - type: precision_at_5
1175
+ value: 13.811000000000002
1176
+ - type: recall_at_1
1177
+ value: 13.058
1178
+ - type: recall_at_10
1179
+ value: 35.458
1180
+ - type: recall_at_100
1181
+ value: 58.719
1182
+ - type: recall_at_1000
1183
+ value: 75.495
1184
+ - type: recall_at_3
1185
+ value: 22.607
1186
+ - type: recall_at_5
1187
+ value: 28.067999999999998
1188
+ - task:
1189
+ type: Retrieval
1190
+ dataset:
1191
+ type: mteb/dbpedia
1192
+ name: MTEB DBPedia
1193
+ config: default
1194
+ split: test
1195
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1196
+ metrics:
1197
+ - type: map_at_1
1198
+ value: 8.811
1199
+ - type: map_at_10
1200
+ value: 19.134999999999998
1201
+ - type: map_at_100
1202
+ value: 26.905
1203
+ - type: map_at_1000
1204
+ value: 28.503
1205
+ - type: map_at_3
1206
+ value: 13.863
1207
+ - type: map_at_5
1208
+ value: 16.062
1209
+ - type: mrr_at_1
1210
+ value: 67.0
1211
+ - type: mrr_at_10
1212
+ value: 74.607
1213
+ - type: mrr_at_100
1214
+ value: 74.941
1215
+ - type: mrr_at_1000
1216
+ value: 74.954
1217
+ - type: mrr_at_3
1218
+ value: 73.042
1219
+ - type: mrr_at_5
1220
+ value: 73.992
1221
+ - type: ndcg_at_1
1222
+ value: 52.87500000000001
1223
+ - type: ndcg_at_10
1224
+ value: 40.199
1225
+ - type: ndcg_at_100
1226
+ value: 44.901
1227
+ - type: ndcg_at_1000
1228
+ value: 52.239999999999995
1229
+ - type: ndcg_at_3
1230
+ value: 44.983000000000004
1231
+ - type: ndcg_at_5
1232
+ value: 42.137
1233
+ - type: precision_at_1
1234
+ value: 67.0
1235
+ - type: precision_at_10
1236
+ value: 31.8
1237
+ - type: precision_at_100
1238
+ value: 10.315000000000001
1239
+ - type: precision_at_1000
1240
+ value: 2.0420000000000003
1241
+ - type: precision_at_3
1242
+ value: 48.667
1243
+ - type: precision_at_5
1244
+ value: 40.9
1245
+ - type: recall_at_1
1246
+ value: 8.811
1247
+ - type: recall_at_10
1248
+ value: 24.503
1249
+ - type: recall_at_100
1250
+ value: 51.288999999999994
1251
+ - type: recall_at_1000
1252
+ value: 74.827
1253
+ - type: recall_at_3
1254
+ value: 15.254999999999999
1255
+ - type: recall_at_5
1256
+ value: 18.698999999999998
1257
+ - task:
1258
+ type: Classification
1259
+ dataset:
1260
+ type: mteb/emotion
1261
+ name: MTEB EmotionClassification
1262
+ config: default
1263
+ split: test
1264
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1265
+ metrics:
1266
+ - type: accuracy
1267
+ value: 41.839999999999996
1268
+ - type: f1
1269
+ value: 37.78718146306379
1270
+ - task:
1271
+ type: Retrieval
1272
+ dataset:
1273
+ type: mteb/fever
1274
+ name: MTEB FEVER
1275
+ config: default
1276
+ split: test
1277
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1278
+ metrics:
1279
+ - type: map_at_1
1280
+ value: 68.47999999999999
1281
+ - type: map_at_10
1282
+ value: 78.782
1283
+ - type: map_at_100
1284
+ value: 79.021
1285
+ - type: map_at_1000
1286
+ value: 79.035
1287
+ - type: map_at_3
1288
+ value: 77.389
1289
+ - type: map_at_5
1290
+ value: 78.347
1291
+ - type: mrr_at_1
1292
+ value: 73.837
1293
+ - type: mrr_at_10
1294
+ value: 83.41499999999999
1295
+ - type: mrr_at_100
1296
+ value: 83.53399999999999
1297
+ - type: mrr_at_1000
1298
+ value: 83.535
1299
+ - type: mrr_at_3
1300
+ value: 82.32300000000001
1301
+ - type: mrr_at_5
1302
+ value: 83.13000000000001
1303
+ - type: ndcg_at_1
1304
+ value: 73.837
1305
+ - type: ndcg_at_10
1306
+ value: 83.404
1307
+ - type: ndcg_at_100
1308
+ value: 84.287
1309
+ - type: ndcg_at_1000
1310
+ value: 84.52199999999999
1311
+ - type: ndcg_at_3
1312
+ value: 81.072
1313
+ - type: ndcg_at_5
1314
+ value: 82.537
1315
+ - type: precision_at_1
1316
+ value: 73.837
1317
+ - type: precision_at_10
1318
+ value: 10.254000000000001
1319
+ - type: precision_at_100
1320
+ value: 1.088
1321
+ - type: precision_at_1000
1322
+ value: 0.11299999999999999
1323
+ - type: precision_at_3
1324
+ value: 31.538
1325
+ - type: precision_at_5
1326
+ value: 19.811
1327
+ - type: recall_at_1
1328
+ value: 68.47999999999999
1329
+ - type: recall_at_10
1330
+ value: 92.98100000000001
1331
+ - type: recall_at_100
1332
+ value: 96.50800000000001
1333
+ - type: recall_at_1000
1334
+ value: 97.925
1335
+ - type: recall_at_3
1336
+ value: 86.764
1337
+ - type: recall_at_5
1338
+ value: 90.39
1339
+ - task:
1340
+ type: Retrieval
1341
+ dataset:
1342
+ type: mteb/fiqa
1343
+ name: MTEB FiQA2018
1344
+ config: default
1345
+ split: test
1346
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1347
+ metrics:
1348
+ - type: map_at_1
1349
+ value: 16.786
1350
+ - type: map_at_10
1351
+ value: 26.97
1352
+ - type: map_at_100
1353
+ value: 28.488000000000003
1354
+ - type: map_at_1000
1355
+ value: 28.665000000000003
1356
+ - type: map_at_3
1357
+ value: 23.3
1358
+ - type: map_at_5
1359
+ value: 25.249
1360
+ - type: mrr_at_1
1361
+ value: 33.025
1362
+ - type: mrr_at_10
1363
+ value: 41.86
1364
+ - type: mrr_at_100
1365
+ value: 42.673
1366
+ - type: mrr_at_1000
1367
+ value: 42.714
1368
+ - type: mrr_at_3
1369
+ value: 39.403
1370
+ - type: mrr_at_5
1371
+ value: 40.723
1372
+ - type: ndcg_at_1
1373
+ value: 33.025
1374
+ - type: ndcg_at_10
1375
+ value: 34.522999999999996
1376
+ - type: ndcg_at_100
1377
+ value: 40.831
1378
+ - type: ndcg_at_1000
1379
+ value: 44.01
1380
+ - type: ndcg_at_3
1381
+ value: 30.698999999999998
1382
+ - type: ndcg_at_5
1383
+ value: 31.832
1384
+ - type: precision_at_1
1385
+ value: 33.025
1386
+ - type: precision_at_10
1387
+ value: 9.583
1388
+ - type: precision_at_100
1389
+ value: 1.619
1390
+ - type: precision_at_1000
1391
+ value: 0.22100000000000003
1392
+ - type: precision_at_3
1393
+ value: 20.216
1394
+ - type: precision_at_5
1395
+ value: 15.031
1396
+ - type: recall_at_1
1397
+ value: 16.786
1398
+ - type: recall_at_10
1399
+ value: 41.969
1400
+ - type: recall_at_100
1401
+ value: 66.353
1402
+ - type: recall_at_1000
1403
+ value: 85.299
1404
+ - type: recall_at_3
1405
+ value: 28.111000000000004
1406
+ - type: recall_at_5
1407
+ value: 33.645
1408
+ - task:
1409
+ type: Retrieval
1410
+ dataset:
1411
+ type: mteb/hotpotqa
1412
+ name: MTEB HotpotQA
1413
+ config: default
1414
+ split: test
1415
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1416
+ metrics:
1417
+ - type: map_at_1
1418
+ value: 37.346000000000004
1419
+ - type: map_at_10
1420
+ value: 56.184999999999995
1421
+ - type: map_at_100
1422
+ value: 57.062000000000005
1423
+ - type: map_at_1000
1424
+ value: 57.126999999999995
1425
+ - type: map_at_3
1426
+ value: 52.815
1427
+ - type: map_at_5
1428
+ value: 54.893
1429
+ - type: mrr_at_1
1430
+ value: 74.693
1431
+ - type: mrr_at_10
1432
+ value: 81.128
1433
+ - type: mrr_at_100
1434
+ value: 81.356
1435
+ - type: mrr_at_1000
1436
+ value: 81.363
1437
+ - type: mrr_at_3
1438
+ value: 80.05600000000001
1439
+ - type: mrr_at_5
1440
+ value: 80.74
1441
+ - type: ndcg_at_1
1442
+ value: 74.693
1443
+ - type: ndcg_at_10
1444
+ value: 65.249
1445
+ - type: ndcg_at_100
1446
+ value: 68.357
1447
+ - type: ndcg_at_1000
1448
+ value: 69.64200000000001
1449
+ - type: ndcg_at_3
1450
+ value: 60.377
1451
+ - type: ndcg_at_5
1452
+ value: 63.044
1453
+ - type: precision_at_1
1454
+ value: 74.693
1455
+ - type: precision_at_10
1456
+ value: 13.630999999999998
1457
+ - type: precision_at_100
1458
+ value: 1.606
1459
+ - type: precision_at_1000
1460
+ value: 0.178
1461
+ - type: precision_at_3
1462
+ value: 38.222
1463
+ - type: precision_at_5
1464
+ value: 25.040000000000003
1465
+ - type: recall_at_1
1466
+ value: 37.346000000000004
1467
+ - type: recall_at_10
1468
+ value: 68.157
1469
+ - type: recall_at_100
1470
+ value: 80.297
1471
+ - type: recall_at_1000
1472
+ value: 88.832
1473
+ - type: recall_at_3
1474
+ value: 57.333
1475
+ - type: recall_at_5
1476
+ value: 62.6
1477
+ - task:
1478
+ type: Classification
1479
+ dataset:
1480
+ type: mteb/imdb
1481
+ name: MTEB ImdbClassification
1482
+ config: default
1483
+ split: test
1484
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1485
+ metrics:
1486
+ - type: accuracy
1487
+ value: 62.80240000000001
1488
+ - type: ap
1489
+ value: 58.22949464075975
1490
+ - type: f1
1491
+ value: 62.55694937343487
1492
+ - task:
1493
+ type: Retrieval
1494
+ dataset:
1495
+ type: mteb/msmarco
1496
+ name: MTEB MSMARCO
1497
+ config: default
1498
+ split: dev
1499
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1500
+ metrics:
1501
+ - type: map_at_1
1502
+ value: 20.918
1503
+ - type: map_at_10
1504
+ value: 32.732
1505
+ - type: map_at_100
1506
+ value: 33.922000000000004
1507
+ - type: map_at_1000
1508
+ value: 33.976
1509
+ - type: map_at_3
1510
+ value: 29.051
1511
+ - type: map_at_5
1512
+ value: 31.101
1513
+ - type: mrr_at_1
1514
+ value: 21.418
1515
+ - type: mrr_at_10
1516
+ value: 33.284000000000006
1517
+ - type: mrr_at_100
1518
+ value: 34.426
1519
+ - type: mrr_at_1000
1520
+ value: 34.473
1521
+ - type: mrr_at_3
1522
+ value: 29.644
1523
+ - type: mrr_at_5
1524
+ value: 31.691000000000003
1525
+ - type: ndcg_at_1
1526
+ value: 21.418
1527
+ - type: ndcg_at_10
1528
+ value: 39.427
1529
+ - type: ndcg_at_100
1530
+ value: 45.190999999999995
1531
+ - type: ndcg_at_1000
1532
+ value: 46.544000000000004
1533
+ - type: ndcg_at_3
1534
+ value: 31.885
1535
+ - type: ndcg_at_5
1536
+ value: 35.555
1537
+ - type: precision_at_1
1538
+ value: 21.418
1539
+ - type: precision_at_10
1540
+ value: 6.254999999999999
1541
+ - type: precision_at_100
1542
+ value: 0.915
1543
+ - type: precision_at_1000
1544
+ value: 0.10300000000000001
1545
+ - type: precision_at_3
1546
+ value: 13.591000000000001
1547
+ - type: precision_at_5
1548
+ value: 10.011000000000001
1549
+ - type: recall_at_1
1550
+ value: 20.918
1551
+ - type: recall_at_10
1552
+ value: 60.074000000000005
1553
+ - type: recall_at_100
1554
+ value: 86.726
1555
+ - type: recall_at_1000
1556
+ value: 97.116
1557
+ - type: recall_at_3
1558
+ value: 39.506
1559
+ - type: recall_at_5
1560
+ value: 48.319
1561
+ - task:
1562
+ type: Classification
1563
+ dataset:
1564
+ type: mteb/mtop_domain
1565
+ name: MTEB MTOPDomainClassification (en)
1566
+ config: en
1567
+ split: test
1568
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1569
+ metrics:
1570
+ - type: accuracy
1571
+ value: 90.79799361605106
1572
+ - type: f1
1573
+ value: 90.0757957511057
1574
+ - task:
1575
+ type: Classification
1576
+ dataset:
1577
+ type: mteb/mtop_intent
1578
+ name: MTEB MTOPIntentClassification (en)
1579
+ config: en
1580
+ split: test
1581
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1582
+ metrics:
1583
+ - type: accuracy
1584
+ value: 58.00501595987233
1585
+ - type: f1
1586
+ value: 39.85731569133947
1587
+ - task:
1588
+ type: Classification
1589
+ dataset:
1590
+ type: masakhane/masakhanews
1591
+ name: MTEB MasakhaNEWSClassification (eng)
1592
+ config: eng
1593
+ split: test
1594
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
1595
+ metrics:
1596
+ - type: accuracy
1597
+ value: 77.10970464135022
1598
+ - type: f1
1599
+ value: 76.12037616356896
1600
+ - task:
1601
+ type: Clustering
1602
+ dataset:
1603
+ type: masakhane/masakhanews
1604
+ name: MTEB MasakhaNEWSClusteringP2P (eng)
1605
+ config: eng
1606
+ split: test
1607
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
1608
+ metrics:
1609
+ - type: v_measure
1610
+ value: 69.81323966287493
1611
+ - task:
1612
+ type: Clustering
1613
+ dataset:
1614
+ type: masakhane/masakhanews
1615
+ name: MTEB MasakhaNEWSClusteringS2S (eng)
1616
+ config: eng
1617
+ split: test
1618
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
1619
+ metrics:
1620
+ - type: v_measure
1621
+ value: 33.112774215788455
1622
+ - task:
1623
+ type: Classification
1624
+ dataset:
1625
+ type: mteb/amazon_massive_intent
1626
+ name: MTEB MassiveIntentClassification (en)
1627
+ config: en
1628
+ split: test
1629
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1630
+ metrics:
1631
+ - type: accuracy
1632
+ value: 63.51042367182246
1633
+ - type: f1
1634
+ value: 60.99310361578824
1635
+ - task:
1636
+ type: Classification
1637
+ dataset:
1638
+ type: mteb/amazon_massive_scenario
1639
+ name: MTEB MassiveScenarioClassification (en)
1640
+ config: en
1641
+ split: test
1642
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1643
+ metrics:
1644
+ - type: accuracy
1645
+ value: 71.0053799596503
1646
+ - type: f1
1647
+ value: 69.7794673003686
1648
+ - task:
1649
+ type: Clustering
1650
+ dataset:
1651
+ type: mteb/medrxiv-clustering-p2p
1652
+ name: MTEB MedrxivClusteringP2P
1653
+ config: default
1654
+ split: test
1655
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1656
+ metrics:
1657
+ - type: v_measure
1658
+ value: 30.56899174856954
1659
+ - task:
1660
+ type: Clustering
1661
+ dataset:
1662
+ type: mteb/medrxiv-clustering-s2s
1663
+ name: MTEB MedrxivClusteringS2S
1664
+ config: default
1665
+ split: test
1666
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1667
+ metrics:
1668
+ - type: v_measure
1669
+ value: 26.21848014733929
1670
+ - task:
1671
+ type: Reranking
1672
+ dataset:
1673
+ type: mteb/mind_small
1674
+ name: MTEB MindSmallReranking
1675
+ config: default
1676
+ split: test
1677
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1678
+ metrics:
1679
+ - type: map
1680
+ value: 30.256308756916646
1681
+ - type: mrr
1682
+ value: 31.123872086825656
1683
+ - task:
1684
+ type: Retrieval
1685
+ dataset:
1686
+ type: mteb/nfcorpus
1687
+ name: MTEB NFCorpus
1688
+ config: default
1689
+ split: test
1690
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1691
+ metrics:
1692
+ - type: map_at_1
1693
+ value: 5.07
1694
+ - type: map_at_10
1695
+ value: 11.286999999999999
1696
+ - type: map_at_100
1697
+ value: 13.630999999999998
1698
+ - type: map_at_1000
1699
+ value: 14.844
1700
+ - type: map_at_3
1701
+ value: 8.395
1702
+ - type: map_at_5
1703
+ value: 9.721
1704
+ - type: mrr_at_1
1705
+ value: 41.486000000000004
1706
+ - type: mrr_at_10
1707
+ value: 51.041000000000004
1708
+ - type: mrr_at_100
1709
+ value: 51.661
1710
+ - type: mrr_at_1000
1711
+ value: 51.7
1712
+ - type: mrr_at_3
1713
+ value: 49.226
1714
+ - type: mrr_at_5
1715
+ value: 50.526
1716
+ - type: ndcg_at_1
1717
+ value: 39.783
1718
+ - type: ndcg_at_10
1719
+ value: 30.885
1720
+ - type: ndcg_at_100
1721
+ value: 27.459
1722
+ - type: ndcg_at_1000
1723
+ value: 35.988
1724
+ - type: ndcg_at_3
1725
+ value: 36.705
1726
+ - type: ndcg_at_5
1727
+ value: 34.156
1728
+ - type: precision_at_1
1729
+ value: 41.486000000000004
1730
+ - type: precision_at_10
1731
+ value: 22.415
1732
+ - type: precision_at_100
1733
+ value: 6.819999999999999
1734
+ - type: precision_at_1000
1735
+ value: 1.8980000000000001
1736
+ - type: precision_at_3
1737
+ value: 34.572
1738
+ - type: precision_at_5
1739
+ value: 29.287999999999997
1740
+ - type: recall_at_1
1741
+ value: 5.07
1742
+ - type: recall_at_10
1743
+ value: 14.576
1744
+ - type: recall_at_100
1745
+ value: 27.112000000000002
1746
+ - type: recall_at_1000
1747
+ value: 57.995
1748
+ - type: recall_at_3
1749
+ value: 9.242
1750
+ - type: recall_at_5
1751
+ value: 11.668000000000001
1752
+ - task:
1753
+ type: Retrieval
1754
+ dataset:
1755
+ type: mteb/nq
1756
+ name: MTEB NQ
1757
+ config: default
1758
+ split: test
1759
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1760
+ metrics:
1761
+ - type: map_at_1
1762
+ value: 32.263999999999996
1763
+ - type: map_at_10
1764
+ value: 47.219
1765
+ - type: map_at_100
1766
+ value: 48.209999999999994
1767
+ - type: map_at_1000
1768
+ value: 48.24
1769
+ - type: map_at_3
1770
+ value: 42.905
1771
+ - type: map_at_5
1772
+ value: 45.501000000000005
1773
+ - type: mrr_at_1
1774
+ value: 36.153
1775
+ - type: mrr_at_10
1776
+ value: 49.636
1777
+ - type: mrr_at_100
1778
+ value: 50.357
1779
+ - type: mrr_at_1000
1780
+ value: 50.378
1781
+ - type: mrr_at_3
1782
+ value: 46.094
1783
+ - type: mrr_at_5
1784
+ value: 48.233
1785
+ - type: ndcg_at_1
1786
+ value: 36.124
1787
+ - type: ndcg_at_10
1788
+ value: 54.764
1789
+ - type: ndcg_at_100
1790
+ value: 58.867999999999995
1791
+ - type: ndcg_at_1000
1792
+ value: 59.548
1793
+ - type: ndcg_at_3
1794
+ value: 46.717999999999996
1795
+ - type: ndcg_at_5
1796
+ value: 50.981
1797
+ - type: precision_at_1
1798
+ value: 36.124
1799
+ - type: precision_at_10
1800
+ value: 8.931000000000001
1801
+ - type: precision_at_100
1802
+ value: 1.126
1803
+ - type: precision_at_1000
1804
+ value: 0.11900000000000001
1805
+ - type: precision_at_3
1806
+ value: 21.051000000000002
1807
+ - type: precision_at_5
1808
+ value: 15.104000000000001
1809
+ - type: recall_at_1
1810
+ value: 32.263999999999996
1811
+ - type: recall_at_10
1812
+ value: 75.39099999999999
1813
+ - type: recall_at_100
1814
+ value: 93.038
1815
+ - type: recall_at_1000
1816
+ value: 98.006
1817
+ - type: recall_at_3
1818
+ value: 54.562999999999995
1819
+ - type: recall_at_5
1820
+ value: 64.352
1821
+ - task:
1822
+ type: Classification
1823
+ dataset:
1824
+ type: ag_news
1825
+ name: MTEB NewsClassification
1826
+ config: default
1827
+ split: test
1828
+ revision: eb185aade064a813bc0b7f42de02595523103ca4
1829
+ metrics:
1830
+ - type: accuracy
1831
+ value: 77.75
1832
+ - type: f1
1833
+ value: 77.504243291547
1834
+ - task:
1835
+ type: PairClassification
1836
+ dataset:
1837
+ type: GEM/opusparcus
1838
+ name: MTEB OpusparcusPC (en)
1839
+ config: en
1840
+ split: test
1841
+ revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
1842
+ metrics:
1843
+ - type: cos_sim_accuracy
1844
+ value: 99.89816700610999
1845
+ - type: cos_sim_ap
1846
+ value: 100.0
1847
+ - type: cos_sim_f1
1848
+ value: 99.9490575649516
1849
+ - type: cos_sim_precision
1850
+ value: 100.0
1851
+ - type: cos_sim_recall
1852
+ value: 99.89816700610999
1853
+ - type: dot_accuracy
1854
+ value: 99.89816700610999
1855
+ - type: dot_ap
1856
+ value: 100.0
1857
+ - type: dot_f1
1858
+ value: 99.9490575649516
1859
+ - type: dot_precision
1860
+ value: 100.0
1861
+ - type: dot_recall
1862
+ value: 99.89816700610999
1863
+ - type: euclidean_accuracy
1864
+ value: 99.89816700610999
1865
+ - type: euclidean_ap
1866
+ value: 100.0
1867
+ - type: euclidean_f1
1868
+ value: 99.9490575649516
1869
+ - type: euclidean_precision
1870
+ value: 100.0
1871
+ - type: euclidean_recall
1872
+ value: 99.89816700610999
1873
+ - type: manhattan_accuracy
1874
+ value: 99.89816700610999
1875
+ - type: manhattan_ap
1876
+ value: 100.0
1877
+ - type: manhattan_f1
1878
+ value: 99.9490575649516
1879
+ - type: manhattan_precision
1880
+ value: 100.0
1881
+ - type: manhattan_recall
1882
+ value: 99.89816700610999
1883
+ - type: max_accuracy
1884
+ value: 99.89816700610999
1885
+ - type: max_ap
1886
+ value: 100.0
1887
+ - type: max_f1
1888
+ value: 99.9490575649516
1889
+ - task:
1890
+ type: PairClassification
1891
+ dataset:
1892
+ type: paws-x
1893
+ name: MTEB PawsX (en)
1894
+ config: en
1895
+ split: test
1896
+ revision: 8a04d940a42cd40658986fdd8e3da561533a3646
1897
+ metrics:
1898
+ - type: cos_sim_accuracy
1899
+ value: 61.75000000000001
1900
+ - type: cos_sim_ap
1901
+ value: 57.9482264289061
1902
+ - type: cos_sim_f1
1903
+ value: 62.444061962134256
1904
+ - type: cos_sim_precision
1905
+ value: 45.3953953953954
1906
+ - type: cos_sim_recall
1907
+ value: 100.0
1908
+ - type: dot_accuracy
1909
+ value: 61.75000000000001
1910
+ - type: dot_ap
1911
+ value: 57.94808038610475
1912
+ - type: dot_f1
1913
+ value: 62.444061962134256
1914
+ - type: dot_precision
1915
+ value: 45.3953953953954
1916
+ - type: dot_recall
1917
+ value: 100.0
1918
+ - type: euclidean_accuracy
1919
+ value: 61.75000000000001
1920
+ - type: euclidean_ap
1921
+ value: 57.94808038610475
1922
+ - type: euclidean_f1
1923
+ value: 62.444061962134256
1924
+ - type: euclidean_precision
1925
+ value: 45.3953953953954
1926
+ - type: euclidean_recall
1927
+ value: 100.0
1928
+ - type: manhattan_accuracy
1929
+ value: 61.7
1930
+ - type: manhattan_ap
1931
+ value: 57.996119308184966
1932
+ - type: manhattan_f1
1933
+ value: 62.46078773091669
1934
+ - type: manhattan_precision
1935
+ value: 45.66768603465851
1936
+ - type: manhattan_recall
1937
+ value: 98.78721058434398
1938
+ - type: max_accuracy
1939
+ value: 61.75000000000001
1940
+ - type: max_ap
1941
+ value: 57.996119308184966
1942
+ - type: max_f1
1943
+ value: 62.46078773091669
1944
+ - task:
1945
+ type: Retrieval
1946
+ dataset:
1947
+ type: mteb/quora
1948
+ name: MTEB QuoraRetrieval
1949
+ config: default
1950
+ split: test
1951
+ revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
1952
+ metrics:
1953
+ - type: map_at_1
1954
+ value: 69.001
1955
+ - type: map_at_10
1956
+ value: 82.573
1957
+ - type: map_at_100
1958
+ value: 83.226
1959
+ - type: map_at_1000
1960
+ value: 83.246
1961
+ - type: map_at_3
1962
+ value: 79.625
1963
+ - type: map_at_5
1964
+ value: 81.491
1965
+ - type: mrr_at_1
1966
+ value: 79.44
1967
+ - type: mrr_at_10
1968
+ value: 85.928
1969
+ - type: mrr_at_100
1970
+ value: 86.05199999999999
1971
+ - type: mrr_at_1000
1972
+ value: 86.054
1973
+ - type: mrr_at_3
1974
+ value: 84.847
1975
+ - type: mrr_at_5
1976
+ value: 85.596
1977
+ - type: ndcg_at_1
1978
+ value: 79.41
1979
+ - type: ndcg_at_10
1980
+ value: 86.568
1981
+ - type: ndcg_at_100
1982
+ value: 87.965
1983
+ - type: ndcg_at_1000
1984
+ value: 88.134
1985
+ - type: ndcg_at_3
1986
+ value: 83.55900000000001
1987
+ - type: ndcg_at_5
1988
+ value: 85.244
1989
+ - type: precision_at_1
1990
+ value: 79.41
1991
+ - type: precision_at_10
1992
+ value: 13.108
1993
+ - type: precision_at_100
1994
+ value: 1.509
1995
+ - type: precision_at_1000
1996
+ value: 0.156
1997
+ - type: precision_at_3
1998
+ value: 36.443
1999
+ - type: precision_at_5
2000
+ value: 24.03
2001
+ - type: recall_at_1
2002
+ value: 69.001
2003
+ - type: recall_at_10
2004
+ value: 94.132
2005
+ - type: recall_at_100
2006
+ value: 99.043
2007
+ - type: recall_at_1000
2008
+ value: 99.878
2009
+ - type: recall_at_3
2010
+ value: 85.492
2011
+ - type: recall_at_5
2012
+ value: 90.226
2013
+ - task:
2014
+ type: Clustering
2015
+ dataset:
2016
+ type: mteb/reddit-clustering
2017
+ name: MTEB RedditClustering
2018
+ config: default
2019
+ split: test
2020
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
2021
+ metrics:
2022
+ - type: v_measure
2023
+ value: 48.3161352736264
2024
+ - task:
2025
+ type: Clustering
2026
+ dataset:
2027
+ type: mteb/reddit-clustering-p2p
2028
+ name: MTEB RedditClusteringP2P
2029
+ config: default
2030
+ split: test
2031
+ revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
2032
+ metrics:
2033
+ - type: v_measure
2034
+ value: 57.83784484156747
2035
+ - task:
2036
+ type: Retrieval
2037
+ dataset:
2038
+ type: mteb/scidocs
2039
+ name: MTEB SCIDOCS
2040
+ config: default
2041
+ split: test
2042
+ revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
2043
+ metrics:
2044
+ - type: map_at_1
2045
+ value: 4.403
2046
+ - type: map_at_10
2047
+ value: 10.922
2048
+ - type: map_at_100
2049
+ value: 12.626000000000001
2050
+ - type: map_at_1000
2051
+ value: 12.883
2052
+ - type: map_at_3
2053
+ value: 7.982
2054
+ - type: map_at_5
2055
+ value: 9.442
2056
+ - type: mrr_at_1
2057
+ value: 21.7
2058
+ - type: mrr_at_10
2059
+ value: 31.653
2060
+ - type: mrr_at_100
2061
+ value: 32.757999999999996
2062
+ - type: mrr_at_1000
2063
+ value: 32.824999999999996
2064
+ - type: mrr_at_3
2065
+ value: 28.266999999999996
2066
+ - type: mrr_at_5
2067
+ value: 30.127
2068
+ - type: ndcg_at_1
2069
+ value: 21.7
2070
+ - type: ndcg_at_10
2071
+ value: 18.355
2072
+ - type: ndcg_at_100
2073
+ value: 25.228
2074
+ - type: ndcg_at_1000
2075
+ value: 30.164
2076
+ - type: ndcg_at_3
2077
+ value: 17.549
2078
+ - type: ndcg_at_5
2079
+ value: 15.260000000000002
2080
+ - type: precision_at_1
2081
+ value: 21.7
2082
+ - type: precision_at_10
2083
+ value: 9.47
2084
+ - type: precision_at_100
2085
+ value: 1.9290000000000003
2086
+ - type: precision_at_1000
2087
+ value: 0.312
2088
+ - type: precision_at_3
2089
+ value: 16.3
2090
+ - type: precision_at_5
2091
+ value: 13.28
2092
+ - type: recall_at_1
2093
+ value: 4.403
2094
+ - type: recall_at_10
2095
+ value: 19.18
2096
+ - type: recall_at_100
2097
+ value: 39.182
2098
+ - type: recall_at_1000
2099
+ value: 63.378
2100
+ - type: recall_at_3
2101
+ value: 9.934999999999999
2102
+ - type: recall_at_5
2103
+ value: 13.459999999999999
2104
+ - task:
2105
+ type: STS
2106
+ dataset:
2107
+ type: mteb/sickr-sts
2108
+ name: MTEB SICK-R
2109
+ config: default
2110
+ split: test
2111
+ revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
2112
+ metrics:
2113
+ - type: cos_sim_pearson
2114
+ value: 76.90841073432534
2115
+ - type: cos_sim_spearman
2116
+ value: 69.2566375434526
2117
+ - type: euclidean_pearson
2118
+ value: 73.00183878559413
2119
+ - type: euclidean_spearman
2120
+ value: 69.25664656235413
2121
+ - type: manhattan_pearson
2122
+ value: 72.89594756197533
2123
+ - type: manhattan_spearman
2124
+ value: 69.23247111043545
2125
+ - task:
2126
+ type: STS
2127
+ dataset:
2128
+ type: mteb/sts12-sts
2129
+ name: MTEB STS12
2130
+ config: default
2131
+ split: test
2132
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
2133
+ metrics:
2134
+ - type: cos_sim_pearson
2135
+ value: 69.60878511794063
2136
+ - type: cos_sim_spearman
2137
+ value: 65.89916377105551
2138
+ - type: euclidean_pearson
2139
+ value: 66.90761876557181
2140
+ - type: euclidean_spearman
2141
+ value: 65.89915018368384
2142
+ - type: manhattan_pearson
2143
+ value: 66.78502575257721
2144
+ - type: manhattan_spearman
2145
+ value: 65.79977053467938
2146
+ - task:
2147
+ type: STS
2148
+ dataset:
2149
+ type: mteb/sts13-sts
2150
+ name: MTEB STS13
2151
+ config: default
2152
+ split: test
2153
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
2154
+ metrics:
2155
+ - type: cos_sim_pearson
2156
+ value: 77.2869334987418
2157
+ - type: cos_sim_spearman
2158
+ value: 77.86961921643416
2159
+ - type: euclidean_pearson
2160
+ value: 77.43179820479914
2161
+ - type: euclidean_spearman
2162
+ value: 77.86961921643416
2163
+ - type: manhattan_pearson
2164
+ value: 77.18900647348373
2165
+ - type: manhattan_spearman
2166
+ value: 77.61209060062608
2167
+ - task:
2168
+ type: STS
2169
+ dataset:
2170
+ type: mteb/sts14-sts
2171
+ name: MTEB STS14
2172
+ config: default
2173
+ split: test
2174
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2175
+ metrics:
2176
+ - type: cos_sim_pearson
2177
+ value: 76.26453932960364
2178
+ - type: cos_sim_spearman
2179
+ value: 72.81574657995401
2180
+ - type: euclidean_pearson
2181
+ value: 75.0708953437423
2182
+ - type: euclidean_spearman
2183
+ value: 72.81574657995401
2184
+ - type: manhattan_pearson
2185
+ value: 74.88396609999512
2186
+ - type: manhattan_spearman
2187
+ value: 72.65437562156805
2188
+ - task:
2189
+ type: STS
2190
+ dataset:
2191
+ type: mteb/sts15-sts
2192
+ name: MTEB STS15
2193
+ config: default
2194
+ split: test
2195
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2196
+ metrics:
2197
+ - type: cos_sim_pearson
2198
+ value: 82.37827653919395
2199
+ - type: cos_sim_spearman
2200
+ value: 83.4885552472602
2201
+ - type: euclidean_pearson
2202
+ value: 82.89377087926749
2203
+ - type: euclidean_spearman
2204
+ value: 83.4885552472602
2205
+ - type: manhattan_pearson
2206
+ value: 82.82440771787735
2207
+ - type: manhattan_spearman
2208
+ value: 83.41449537888975
2209
+ - task:
2210
+ type: STS
2211
+ dataset:
2212
+ type: mteb/sts16-sts
2213
+ name: MTEB STS16
2214
+ config: default
2215
+ split: test
2216
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2217
+ metrics:
2218
+ - type: cos_sim_pearson
2219
+ value: 78.7995043673964
2220
+ - type: cos_sim_spearman
2221
+ value: 80.57804447517638
2222
+ - type: euclidean_pearson
2223
+ value: 80.03013884278195
2224
+ - type: euclidean_spearman
2225
+ value: 80.57804447517638
2226
+ - type: manhattan_pearson
2227
+ value: 80.13406111544424
2228
+ - type: manhattan_spearman
2229
+ value: 80.65354602648962
2230
+ - task:
2231
+ type: STS
2232
+ dataset:
2233
+ type: mteb/sts17-crosslingual-sts
2234
+ name: MTEB STS17 (en-en)
2235
+ config: en-en
2236
+ split: test
2237
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2238
+ metrics:
2239
+ - type: cos_sim_pearson
2240
+ value: 83.63565989937278
2241
+ - type: cos_sim_spearman
2242
+ value: 84.4948593656943
2243
+ - type: euclidean_pearson
2244
+ value: 84.68743074820951
2245
+ - type: euclidean_spearman
2246
+ value: 84.4948593656943
2247
+ - type: manhattan_pearson
2248
+ value: 84.43639397781811
2249
+ - type: manhattan_spearman
2250
+ value: 84.32595552115242
2251
+ - task:
2252
+ type: STS
2253
+ dataset:
2254
+ type: mteb/sts22-crosslingual-sts
2255
+ name: MTEB STS22 (en)
2256
+ config: en
2257
+ split: test
2258
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2259
+ metrics:
2260
+ - type: cos_sim_pearson
2261
+ value: 65.06382649277246
2262
+ - type: cos_sim_spearman
2263
+ value: 66.28447782018655
2264
+ - type: euclidean_pearson
2265
+ value: 67.09895930908392
2266
+ - type: euclidean_spearman
2267
+ value: 66.28447782018655
2268
+ - type: manhattan_pearson
2269
+ value: 66.96342453888376
2270
+ - type: manhattan_spearman
2271
+ value: 66.33876259551842
2272
+ - task:
2273
+ type: STS
2274
+ dataset:
2275
+ type: mteb/stsbenchmark-sts
2276
+ name: MTEB STSBenchmark
2277
+ config: default
2278
+ split: test
2279
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2280
+ metrics:
2281
+ - type: cos_sim_pearson
2282
+ value: 78.43883428940346
2283
+ - type: cos_sim_spearman
2284
+ value: 79.18395553127085
2285
+ - type: euclidean_pearson
2286
+ value: 79.22986635457109
2287
+ - type: euclidean_spearman
2288
+ value: 79.18395553127085
2289
+ - type: manhattan_pearson
2290
+ value: 79.10921229934691
2291
+ - type: manhattan_spearman
2292
+ value: 79.02283553930171
2293
+ - task:
2294
+ type: STS
2295
+ dataset:
2296
+ type: PhilipMay/stsb_multi_mt
2297
+ name: MTEB STSBenchmarkMultilingualSTS (en)
2298
+ config: en
2299
+ split: test
2300
+ revision: 93d57ef91790589e3ce9c365164337a8a78b7632
2301
+ metrics:
2302
+ - type: cos_sim_pearson
2303
+ value: 78.43883433444418
2304
+ - type: cos_sim_spearman
2305
+ value: 79.18395553127085
2306
+ - type: euclidean_pearson
2307
+ value: 79.22986642351681
2308
+ - type: euclidean_spearman
2309
+ value: 79.18395553127085
2310
+ - type: manhattan_pearson
2311
+ value: 79.10921236746302
2312
+ - type: manhattan_spearman
2313
+ value: 79.02283553930171
2314
+ - task:
2315
+ type: Reranking
2316
+ dataset:
2317
+ type: mteb/scidocs-reranking
2318
+ name: MTEB SciDocsRR
2319
+ config: default
2320
+ split: test
2321
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2322
+ metrics:
2323
+ - type: map
2324
+ value: 76.9361627171417
2325
+ - type: mrr
2326
+ value: 93.06577046773126
2327
+ - task:
2328
+ type: Retrieval
2329
+ dataset:
2330
+ type: mteb/scifact
2331
+ name: MTEB SciFact
2332
+ config: default
2333
+ split: test
2334
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2335
+ metrics:
2336
+ - type: map_at_1
2337
+ value: 50.693999999999996
2338
+ - type: map_at_10
2339
+ value: 59.784000000000006
2340
+ - type: map_at_100
2341
+ value: 60.443000000000005
2342
+ - type: map_at_1000
2343
+ value: 60.480000000000004
2344
+ - type: map_at_3
2345
+ value: 57.028
2346
+ - type: map_at_5
2347
+ value: 58.306999999999995
2348
+ - type: mrr_at_1
2349
+ value: 53.333
2350
+ - type: mrr_at_10
2351
+ value: 61.565000000000005
2352
+ - type: mrr_at_100
2353
+ value: 62.095
2354
+ - type: mrr_at_1000
2355
+ value: 62.131
2356
+ - type: mrr_at_3
2357
+ value: 59.721999999999994
2358
+ - type: mrr_at_5
2359
+ value: 60.589000000000006
2360
+ - type: ndcg_at_1
2361
+ value: 53.333
2362
+ - type: ndcg_at_10
2363
+ value: 64.512
2364
+ - type: ndcg_at_100
2365
+ value: 67.366
2366
+ - type: ndcg_at_1000
2367
+ value: 68.46799999999999
2368
+ - type: ndcg_at_3
2369
+ value: 59.748999999999995
2370
+ - type: ndcg_at_5
2371
+ value: 61.526
2372
+ - type: precision_at_1
2373
+ value: 53.333
2374
+ - type: precision_at_10
2375
+ value: 8.733
2376
+ - type: precision_at_100
2377
+ value: 1.027
2378
+ - type: precision_at_1000
2379
+ value: 0.11199999999999999
2380
+ - type: precision_at_3
2381
+ value: 23.222
2382
+ - type: precision_at_5
2383
+ value: 15.2
2384
+ - type: recall_at_1
2385
+ value: 50.693999999999996
2386
+ - type: recall_at_10
2387
+ value: 77.333
2388
+ - type: recall_at_100
2389
+ value: 90.10000000000001
2390
+ - type: recall_at_1000
2391
+ value: 99.0
2392
+ - type: recall_at_3
2393
+ value: 64.39399999999999
2394
+ - type: recall_at_5
2395
+ value: 68.7
2396
+ - task:
2397
+ type: PairClassification
2398
+ dataset:
2399
+ type: mteb/sprintduplicatequestions-pairclassification
2400
+ name: MTEB SprintDuplicateQuestions
2401
+ config: default
2402
+ split: test
2403
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2404
+ metrics:
2405
+ - type: cos_sim_accuracy
2406
+ value: 99.81386138613861
2407
+ - type: cos_sim_ap
2408
+ value: 94.96375600031361
2409
+ - type: cos_sim_f1
2410
+ value: 90.36885245901641
2411
+ - type: cos_sim_precision
2412
+ value: 92.64705882352942
2413
+ - type: cos_sim_recall
2414
+ value: 88.2
2415
+ - type: dot_accuracy
2416
+ value: 99.81386138613861
2417
+ - type: dot_ap
2418
+ value: 94.96375600031361
2419
+ - type: dot_f1
2420
+ value: 90.36885245901641
2421
+ - type: dot_precision
2422
+ value: 92.64705882352942
2423
+ - type: dot_recall
2424
+ value: 88.2
2425
+ - type: euclidean_accuracy
2426
+ value: 99.81386138613861
2427
+ - type: euclidean_ap
2428
+ value: 94.96375600031361
2429
+ - type: euclidean_f1
2430
+ value: 90.36885245901641
2431
+ - type: euclidean_precision
2432
+ value: 92.64705882352942
2433
+ - type: euclidean_recall
2434
+ value: 88.2
2435
+ - type: manhattan_accuracy
2436
+ value: 99.81287128712871
2437
+ - type: manhattan_ap
2438
+ value: 94.92563500640084
2439
+ - type: manhattan_f1
2440
+ value: 90.27277406073082
2441
+ - type: manhattan_precision
2442
+ value: 93.00106044538707
2443
+ - type: manhattan_recall
2444
+ value: 87.7
2445
+ - type: max_accuracy
2446
+ value: 99.81386138613861
2447
+ - type: max_ap
2448
+ value: 94.96375600031361
2449
+ - type: max_f1
2450
+ value: 90.36885245901641
2451
+ - task:
2452
+ type: Clustering
2453
+ dataset:
2454
+ type: mteb/stackexchange-clustering
2455
+ name: MTEB StackExchangeClustering
2456
+ config: default
2457
+ split: test
2458
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2459
+ metrics:
2460
+ - type: v_measure
2461
+ value: 57.486984956276274
2462
+ - task:
2463
+ type: Clustering
2464
+ dataset:
2465
+ type: mteb/stackexchange-clustering-p2p
2466
+ name: MTEB StackExchangeClusteringP2P
2467
+ config: default
2468
+ split: test
2469
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2470
+ metrics:
2471
+ - type: v_measure
2472
+ value: 34.58453023612073
2473
+ - task:
2474
+ type: Reranking
2475
+ dataset:
2476
+ type: mteb/stackoverflowdupquestions-reranking
2477
+ name: MTEB StackOverflowDupQuestions
2478
+ config: default
2479
+ split: test
2480
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2481
+ metrics:
2482
+ - type: map
2483
+ value: 50.16317315282306
2484
+ - type: mrr
2485
+ value: 50.82617137764197
2486
+ - task:
2487
+ type: Summarization
2488
+ dataset:
2489
+ type: mteb/summeval
2490
+ name: MTEB SummEval
2491
+ config: default
2492
+ split: test
2493
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2494
+ metrics:
2495
+ - type: cos_sim_pearson
2496
+ value: 30.2927995133324
2497
+ - type: cos_sim_spearman
2498
+ value: 30.09648622523191
2499
+ - type: dot_pearson
2500
+ value: 30.29279853541771
2501
+ - type: dot_spearman
2502
+ value: 30.09648622523191
2503
+ - task:
2504
+ type: Retrieval
2505
+ dataset:
2506
+ type: mteb/trec-covid
2507
+ name: MTEB TRECCOVID
2508
+ config: default
2509
+ split: test
2510
+ revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
2511
+ metrics:
2512
+ - type: map_at_1
2513
+ value: 0.23500000000000001
2514
+ - type: map_at_10
2515
+ value: 2.01
2516
+ - type: map_at_100
2517
+ value: 12.064
2518
+ - type: map_at_1000
2519
+ value: 27.437
2520
+ - type: map_at_3
2521
+ value: 0.6649999999999999
2522
+ - type: map_at_5
2523
+ value: 1.0959999999999999
2524
+ - type: mrr_at_1
2525
+ value: 88.0
2526
+ - type: mrr_at_10
2527
+ value: 92.667
2528
+ - type: mrr_at_100
2529
+ value: 92.667
2530
+ - type: mrr_at_1000
2531
+ value: 92.667
2532
+ - type: mrr_at_3
2533
+ value: 91.667
2534
+ - type: mrr_at_5
2535
+ value: 92.667
2536
+ - type: ndcg_at_1
2537
+ value: 84.0
2538
+ - type: ndcg_at_10
2539
+ value: 79.431
2540
+ - type: ndcg_at_100
2541
+ value: 60.914
2542
+ - type: ndcg_at_1000
2543
+ value: 52.005
2544
+ - type: ndcg_at_3
2545
+ value: 82.285
2546
+ - type: ndcg_at_5
2547
+ value: 81.565
2548
+ - type: precision_at_1
2549
+ value: 88.0
2550
+ - type: precision_at_10
2551
+ value: 84.8
2552
+ - type: precision_at_100
2553
+ value: 62.32
2554
+ - type: precision_at_1000
2555
+ value: 23.014000000000003
2556
+ - type: precision_at_3
2557
+ value: 86.667
2558
+ - type: precision_at_5
2559
+ value: 87.2
2560
+ - type: recall_at_1
2561
+ value: 0.23500000000000001
2562
+ - type: recall_at_10
2563
+ value: 2.19
2564
+ - type: recall_at_100
2565
+ value: 14.904
2566
+ - type: recall_at_1000
2567
+ value: 47.875
2568
+ - type: recall_at_3
2569
+ value: 0.695
2570
+ - type: recall_at_5
2571
+ value: 1.165
2572
+ - task:
2573
+ type: Retrieval
2574
+ dataset:
2575
+ type: mteb/touche2020
2576
+ name: MTEB Touche2020
2577
+ config: default
2578
+ split: test
2579
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2580
+ metrics:
2581
+ - type: map_at_1
2582
+ value: 3.639
2583
+ - type: map_at_10
2584
+ value: 14.184
2585
+ - type: map_at_100
2586
+ value: 20.61
2587
+ - type: map_at_1000
2588
+ value: 22.377
2589
+ - type: map_at_3
2590
+ value: 9.163
2591
+ - type: map_at_5
2592
+ value: 10.773000000000001
2593
+ - type: mrr_at_1
2594
+ value: 46.939
2595
+ - type: mrr_at_10
2596
+ value: 59.345000000000006
2597
+ - type: mrr_at_100
2598
+ value: 60.07599999999999
2599
+ - type: mrr_at_1000
2600
+ value: 60.07599999999999
2601
+ - type: mrr_at_3
2602
+ value: 55.782
2603
+ - type: mrr_at_5
2604
+ value: 58.231
2605
+ - type: ndcg_at_1
2606
+ value: 41.837
2607
+ - type: ndcg_at_10
2608
+ value: 32.789
2609
+ - type: ndcg_at_100
2610
+ value: 42.232
2611
+ - type: ndcg_at_1000
2612
+ value: 53.900999999999996
2613
+ - type: ndcg_at_3
2614
+ value: 41.963
2615
+ - type: ndcg_at_5
2616
+ value: 35.983
2617
+ - type: precision_at_1
2618
+ value: 46.939
2619
+ - type: precision_at_10
2620
+ value: 28.163
2621
+ - type: precision_at_100
2622
+ value: 8.102
2623
+ - type: precision_at_1000
2624
+ value: 1.59
2625
+ - type: precision_at_3
2626
+ value: 44.897999999999996
2627
+ - type: precision_at_5
2628
+ value: 34.694
2629
+ - type: recall_at_1
2630
+ value: 3.639
2631
+ - type: recall_at_10
2632
+ value: 19.308
2633
+ - type: recall_at_100
2634
+ value: 48.992000000000004
2635
+ - type: recall_at_1000
2636
+ value: 84.59400000000001
2637
+ - type: recall_at_3
2638
+ value: 9.956
2639
+ - type: recall_at_5
2640
+ value: 12.33
2641
+ - task:
2642
+ type: Classification
2643
+ dataset:
2644
+ type: mteb/toxic_conversations_50k
2645
+ name: MTEB ToxicConversationsClassification
2646
+ config: default
2647
+ split: test
2648
+ revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
2649
+ metrics:
2650
+ - type: accuracy
2651
+ value: 64.305
2652
+ - type: ap
2653
+ value: 11.330746746072599
2654
+ - type: f1
2655
+ value: 49.290704382387865
2656
+ - task:
2657
+ type: Classification
2658
+ dataset:
2659
+ type: mteb/tweet_sentiment_extraction
2660
+ name: MTEB TweetSentimentExtractionClassification
2661
+ config: default
2662
+ split: test
2663
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2664
+ metrics:
2665
+ - type: accuracy
2666
+ value: 56.1941143180532
2667
+ - type: f1
2668
+ value: 56.40189765095578
2669
+ - task:
2670
+ type: Clustering
2671
+ dataset:
2672
+ type: mteb/twentynewsgroups-clustering
2673
+ name: MTEB TwentyNewsgroupsClustering
2674
+ config: default
2675
+ split: test
2676
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2677
+ metrics:
2678
+ - type: v_measure
2679
+ value: 36.28189332526842
2680
+ - task:
2681
+ type: PairClassification
2682
+ dataset:
2683
+ type: mteb/twittersemeval2015-pairclassification
2684
+ name: MTEB TwitterSemEval2015
2685
+ config: default
2686
+ split: test
2687
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2688
+ metrics:
2689
+ - type: cos_sim_accuracy
2690
+ value: 83.1912737676581
2691
+ - type: cos_sim_ap
2692
+ value: 64.31536990146257
2693
+ - type: cos_sim_f1
2694
+ value: 61.095167030191696
2695
+ - type: cos_sim_precision
2696
+ value: 54.074375127006704
2697
+ - type: cos_sim_recall
2698
+ value: 70.21108179419525
2699
+ - type: dot_accuracy
2700
+ value: 83.1912737676581
2701
+ - type: dot_ap
2702
+ value: 64.31539216162541
2703
+ - type: dot_f1
2704
+ value: 61.095167030191696
2705
+ - type: dot_precision
2706
+ value: 54.074375127006704
2707
+ - type: dot_recall
2708
+ value: 70.21108179419525
2709
+ - type: euclidean_accuracy
2710
+ value: 83.1912737676581
2711
+ - type: euclidean_ap
2712
+ value: 64.31538391358727
2713
+ - type: euclidean_f1
2714
+ value: 61.095167030191696
2715
+ - type: euclidean_precision
2716
+ value: 54.074375127006704
2717
+ - type: euclidean_recall
2718
+ value: 70.21108179419525
2719
+ - type: manhattan_accuracy
2720
+ value: 83.07206294331525
2721
+ - type: manhattan_ap
2722
+ value: 64.14646315556838
2723
+ - type: manhattan_f1
2724
+ value: 61.194029850746254
2725
+ - type: manhattan_precision
2726
+ value: 54.166666666666664
2727
+ - type: manhattan_recall
2728
+ value: 70.31662269129288
2729
+ - type: max_accuracy
2730
+ value: 83.1912737676581
2731
+ - type: max_ap
2732
+ value: 64.31539216162541
2733
+ - type: max_f1
2734
+ value: 61.194029850746254
2735
+ - task:
2736
+ type: PairClassification
2737
+ dataset:
2738
+ type: mteb/twitterurlcorpus-pairclassification
2739
+ name: MTEB TwitterURLCorpus
2740
+ config: default
2741
+ split: test
2742
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2743
+ metrics:
2744
+ - type: cos_sim_accuracy
2745
+ value: 88.38242713548337
2746
+ - type: cos_sim_ap
2747
+ value: 84.70041255196017
2748
+ - type: cos_sim_f1
2749
+ value: 77.13222561986515
2750
+ - type: cos_sim_precision
2751
+ value: 73.95266690215472
2752
+ - type: cos_sim_recall
2753
+ value: 80.59747459193102
2754
+ - type: dot_accuracy
2755
+ value: 88.38242713548337
2756
+ - type: dot_ap
2757
+ value: 84.7004118720222
2758
+ - type: dot_f1
2759
+ value: 77.13222561986515
2760
+ - type: dot_precision
2761
+ value: 73.95266690215472
2762
+ - type: dot_recall
2763
+ value: 80.59747459193102
2764
+ - type: euclidean_accuracy
2765
+ value: 88.38242713548337
2766
+ - type: euclidean_ap
2767
+ value: 84.70041593996575
2768
+ - type: euclidean_f1
2769
+ value: 77.13222561986515
2770
+ - type: euclidean_precision
2771
+ value: 73.95266690215472
2772
+ - type: euclidean_recall
2773
+ value: 80.59747459193102
2774
+ - type: manhattan_accuracy
2775
+ value: 88.36108200411378
2776
+ - type: manhattan_ap
2777
+ value: 84.66897701572054
2778
+ - type: manhattan_f1
2779
+ value: 77.00707640360645
2780
+ - type: manhattan_precision
2781
+ value: 72.17695778062082
2782
+ - type: manhattan_recall
2783
+ value: 82.53002771789343
2784
+ - type: max_accuracy
2785
+ value: 88.38242713548337
2786
+ - type: max_ap
2787
+ value: 84.70041593996575
2788
+ - type: max_f1
2789
+ value: 77.13222561986515
2790
+ - task:
2791
+ type: Clustering
2792
+ dataset:
2793
+ type: jinaai/cities_wiki_clustering
2794
+ name: MTEB WikiCitiesClustering
2795
+ config: default
2796
+ split: test
2797
+ revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa
2798
+ metrics:
2799
+ - type: v_measure
2800
+ value: 81.46426354153643
2801
  ---