File size: 1,939 Bytes
92912ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
language:
- en
license: mit
base_model: microsoft/speecht5_tts
tags:
- English
- generated_from_trainer
datasets:
- Yassmen/TTS_English_Technical_data
model-index:
- name: SpeechT5-fine-tune-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SpeechT5-fine-tune-en
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the TTS_English_Technical_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4469
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.578 | 0.3870 | 100 | 0.5009 |
| 0.5417 | 0.7741 | 200 | 0.4890 |
| 0.5072 | 1.1611 | 300 | 0.4739 |
| 0.4956 | 1.5481 | 400 | 0.4615 |
| 0.4915 | 1.9352 | 500 | 0.4560 |
| 0.4837 | 2.3222 | 600 | 0.4498 |
| 0.4856 | 2.7092 | 700 | 0.4469 |
### Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
|