File size: 2,356 Bytes
c211706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eceae0c
c211706
 
 
 
 
 
 
 
 
e37482b
eceae0c
c211706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eceae0c
 
 
 
 
 
 
 
 
 
c211706
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnext-large-224-22k-1k-BottomSportsCasual
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# convnext-large-224-22k-1k-BottomSportsCasual

This model is a fine-tuned version of [facebook/convnext-large-224-22k-1k](https://huggingface.co/facebook/convnext-large-224-22k-1k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0051
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 7
- total_train_batch_size: 56
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0732        | 1.0   | 141  | 0.0117          | 0.9943   |
| 0.0664        | 2.0   | 283  | 0.0051          | 1.0      |
| 0.065         | 2.99  | 424  | 0.0047          | 0.9989   |
| 0.0635        | 4.0   | 566  | 0.0029          | 1.0      |
| 0.0357        | 4.99  | 707  | 0.0048          | 0.9966   |
| 0.0826        | 6.0   | 849  | 0.0029          | 0.9989   |
| 0.0177        | 7.0   | 991  | 0.0018          | 1.0      |
| 0.0353        | 8.0   | 1132 | 0.0007          | 1.0      |
| 0.0243        | 9.0   | 1274 | 0.0003          | 1.0      |
| 0.0259        | 9.96  | 1410 | 0.0004          | 1.0      |


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.0
- Datasets 2.12.0
- Tokenizers 0.13.3