--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - Souvikcmsa/autotrain-data-sentimentAnalysis_By_Souvik co2_eq_emissions: 4.453029772491864 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 762623422 - CO2 Emissions (in grams): 4.453029772491864 ## Validation Metrics - Loss: 0.40843138098716736 - Accuracy: 0.8302828618968386 - Macro F1: 0.8302447939743022 - Micro F1: 0.8302828618968385 - Weighted F1: 0.8302151855901072 - Macro Precision: 0.8310980209442669 - Micro Precision: 0.8302828618968386 - Weighted Precision: 0.8313262654775467 - Macro Recall: 0.8305699539252172 - Micro Recall: 0.8302828618968386 - Weighted Recall: 0.8302828618968386 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Souvikcmsa/autotrain-sentimentAnalysis_By_Souvik-762623422 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Souvikcmsa/autotrain-sentimentAnalysis_By_Souvik-762623422", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Souvikcmsa/autotrain-sentimentAnalysis_By_Souvik-762623422", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```