Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 263.23 +/- 27.34
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b4106f34f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b4106f35000>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b4106f35090>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b4106f35120>", "_build": "<function ActorCriticPolicy._build at 0x7b4106f351b0>", "forward": "<function ActorCriticPolicy.forward at 0x7b4106f35240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b4106f352d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b4106f35360>", "_predict": "<function ActorCriticPolicy._predict at 0x7b4106f353f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b4106f35480>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b4106f35510>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b4106f355a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b41070cbec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714520372426737793, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAACVy7yR9yU/M0VVPb6Krr4kM1Y7fnTaPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBeH80k4WGMAWyUTQABjAF0lEdAn0D/rWy1NXV9lChoBkdAcfNBvaURnWgHS/NoCEdAn0KN8NQTEnV9lChoBkdAcAA7LdN34mgHTRYBaAhHQJ9ER7MPjGV1fZQoaAZHQG43QEhaC+VoB0v0aAhHQJ9HEv38GcF1fZQoaAZHQG/D9jXnQppoB0v0aAhHQJ9Iizv7WNF1fZQoaAZHQHGmh+z+m3xoB00ZAWgIR0CfSk+Q2dd3dX2UKGgGR0BzlIU0vXbuaAdNBQFoCEdAn0vuuieum3V9lChoBkdAcziC7sfJWGgHS/hoCEdAn06zo+wC83V9lChoBkdAcNT3d9Dx9WgHS/1oCEdAn1BaFM7EHnV9lChoBkdAbWIWTot+TmgHTRwBaAhHQJ9SH+n62v11fZQoaAZHQEqF8YQ8OkNoB0u1aAhHQJ9TS0Z3s5Z1fZQoaAZHQHFV4yfthNNoB00WAWgIR0CfVjsnAqNIdX2UKGgGR0ByQ/avicXnaAdL7WgIR0CfV6wWnCO4dX2UKGgGR0BxUqRuCPIXaAdL5GgIR0CfWSBAOavzdX2UKGgGR0BuISEpRXOoaAdL72gIR0CfWotpEhJRdX2UKGgGR0BwH50fYBeYaAdNFgFoCEdAn11zoQnQY3V9lChoBkdAcvq/R3NcGGgHS+5oCEdAn17a86FM7HV9lChoBkdAbzbtfG+9J2gHTQoBaAhHQJ9gk5wOvuB1fZQoaAZHQHDZwxN7BwdoB0v9aAhHQJ9iFo+Ofd11fZQoaAZHQFJtOZb6guhoB0ujaAhHQJ9jEe9zwMJ1fZQoaAZHQHFePPszEaVoB0vyaAhHQJ9l0Yl6Z6V1fZQoaAZHQG3/ioS+QEJoB02mAmgIR0Cfar6w+t8vdX2UKGgGR0Bvh40fozN2aAdNDAFoCEdAn26gIdELIHV9lChoBkdAcSgpLmITG2gHS/RoCEdAn3DadpZfUnV9lChoBkdAT/23Sa3I/GgHS9doCEdAn3Isgpz90nV9lChoBkdAcmeMQVbiZWgHS/9oCEdAn3PCXD3ueHV9lChoBkdAcDyN6PbO/2gHTQoBaAhHQJ92oJu2qkx1fZQoaAZHQG++E1VHWjJoB0viaAhHQJ939XEIgNh1fZQoaAZHQHHKju0CzTpoB00JAWgIR0CfebFlkH2RdX2UKGgGR0BtKIkLQXyiaAdL82gIR0Cfex495hScdX2UKGgGR0BwXC4YrJ8waAdL8GgIR0CffKV0cOsldX2UKGgGR0BUHNaY/mknaAdLqmgIR0Cffu0+1SfldX2UKGgGR0Bw26KekHlfaAdL/WgIR0CfgHTot+TedX2UKGgGR0BxILTjNpudaAdL3WgIR0Cfgd5J9RaYdX2UKGgGR0BxkIx20Re1aAdNAAFoCEdAn4Nd/e+EiHV9lChoBkdAUVaqS5iEx2gHS9JoCEdAn4XrVOKwZHV9lChoBkdAbn4T0QK8c2gHTRUBaAhHQJ+HkIjW07d1fZQoaAZHQHCJ9RWLgoBoB0vwaAhHQJ+JFpYcNpd1fZQoaAZHQHFCBn8KohpoB000AWgIR0Cfiugk1MufdX2UKGgGR0BwjcOiFj/daAdNFgFoCEdAn437+glF+nV9lChoBkdAcNiMvysjmmgHTQYBaAhHQJ+PgymALAp1fZQoaAZHQHHYbgn+hoNoB01qAWgIR0CfkdwSJ0nxdX2UKGgGR0BweATpPhybaAdL+2gIR0Cfk2hSLqD9dX2UKGgGR0Bw/0fgaWHDaAdL/2gIR0CflkYlIEr5dX2UKGgGR0BwgL987ZFoaAdL2GgIR0Cfl5ho/RmcdX2UKGgGR0BP0sFMZgogaAdLxWgIR0CfmNzLOiWWdX2UKGgGR0BxFdQemvW6aAdL4WgIR0Cfmsz3AVO9dX2UKGgGR0BRbC8e0XxfaAdLuWgIR0Cfnglv60pmdX2UKGgGR0BvDT1/Ue+3aAdNHgFoCEdAn6BxIOH313V9lChoBkdAcGbh4dIXj2gHTRABaAhHQJ+ibfTCtRx1fZQoaAZHQE7BmYBvJiloB0vMaAhHQJ+jsL9deIF1fZQoaAZHQGwA/1g6U7loB01EAmgIR0CfqIy6MBIXdX2UKGgGR0A1oFXq7iAEaAdLwmgIR0CfqbSBbwBpdX2UKGgGR0BufkRradtmaAdNDwFoCEdAn6tW8dxQznV9lChoBkdAcWZhakhzNmgHS+VoCEdAn64lG9YfXHV9lChoBkdAMiqxgRbr1WgHS8FoCEdAn68/5YYBNnV9lChoBkdAcgAzDXOGCmgHTQQBaAhHQJ+w5vvSc9Z1fZQoaAZHQG8pMpG4I8hoB0v1aAhHQJ+yXpV0cOt1fZQoaAZHQFB83X7Lt/poB0vJaAhHQJ+zmGZeAut1fZQoaAZHQGyA9Oh0yQBoB0vaaAhHQJ+2SJVKf4B1fZQoaAZHQGx19upCKJloB01KAmgIR0CfufjLjghsdX2UKGgGR0BSTWyC4BmxaAdLp2gIR0Cfuw1XvH94dX2UKGgGR0BxpvmvGIbgaAdNPQFoCEdAn75VymygPHV9lChoBkdAb/yI9kjHGWgHTRQBaAhHQJ/AHG0eEIx1fZQoaAZHQHBbYWpIczZoB00NAWgIR0Cfwcf5DZ13dX2UKGgGR0BuTz4gzP8iaAdL8GgIR0Cfw0FFUhmodX2UKGgGR0BxhsccU/OdaAdL32gIR0Cfxckq+ajOdX2UKGgGR0BxtYuDjBEbaAdNEwFoCEdAn8eisr/bTXV9lChoBkdAbP4vovBacWgHTQABaAhHQJ/JZAprk811fZQoaAZHQHGA9qtYB/9oB0v6aAhHQJ/LXurp7kZ1fZQoaAZHQG2cvMjeKsNoB00eAWgIR0Cfz3S1Vo6CdX2UKGgGR0Btj4w7DEWJaAdL+mgIR0Cf0ag+QlrudX2UKGgGR0Byut67dznzaAdL+WgIR0Cf0y4fwI+odX2UKGgGR0BxGI9TxXnyaAdL9WgIR0Cf1KAdGRV7dX2UKGgGR0BwRJaB7NSqaAdNFQFoCEdAn9fUo0ALiXV9lChoBkdAb++ZeAuqWGgHTQABaAhHQJ/ZWs+3Yth1fZQoaAZHQHCwDlPrOZ9oB00VAWgIR0Cf2vXp4bCKdX2UKGgGR0BtGMeKbaysaAdL8mgIR0Cf3Iwx33YddX2UKGgGR0BwI/QF9roGaAdNBAFoCEdAn9+Op4rz5HV9lChoBkdASjB88cMmW2gHS5poCEdAn+B7aAWi13V9lChoBkdARs/Sx7iQ1mgHS8BoCEdAn+Gc7U5MlHV9lChoBkdAcS9W7voeP2gHTQYBaAhHQJ/jUXBP9DR1fZQoaAZHQHEmPGZNO/NoB0v8aAhHQJ/mVKcurZJ1fZQoaAZHQHA0CnLq2SdoB00EAWgIR0Cf5+9tMwlCdX2UKGgGR0ByU9Z5iVjaaAdL82gIR0Cf6WEWIoE0dX2UKGgGR0BuGNQfp2U0aAdL6WgIR0Cf6tRigCfZdX2UKGgGR0BC0606YE4eaAdLwmgIR0Cf7AVHnU2DdX2UKGgGR0ByUulImPYGaAdL72gIR0Cf7uFjNIK/dX2UKGgGR0Bv7RdhRZU2aAdNGQFoCEdAn/CcQumJnHV9lChoBkdAcVyrt3OfNGgHTS0BaAhHQJ/ybYL9deJ1fZQoaAZHQHAPUJv5xipoB0vbaAhHQJ/z5PFefI11fZQoaAZHQG1AH+Q2dd5oB02BAWgIR0Cf93YxL0z1dX2UKGgGR0BMNHVG0/noaAdLwWgIR0Cf+KauwHJLdX2UKGgGR0Bw7AQYk3S8aAdNCwFoCEdAn/qOX/o7m3V9lChoBkdAbXoI68xsVWgHS+poCEdAn/4fY4ACGXV9lChoBkdARFjgZTAFgWgHS8RoCEdAn//KOLiuMnV9lChoBkdAb2DZFocrAmgHTTQBaAhHQKABLiYsunN1fZQoaAZHQG8ZVEmY0EZoB0vraAhHQKAB9svZh8Z1fZQoaAZHQGFKTIeYD1ZoB03oA2gIR0CgBdgrxy4ndX2UKGgGR0A7/pVCHARDaAdL1WgIR0CgBoe1Bt1qdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc4b24b7afa8150e932720a0884ba4ce7cdeacd59cc86d2aafa705fde6913550
|
3 |
+
size 147350
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b4106f34f70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b4106f35000>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b4106f35090>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b4106f35120>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b4106f351b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b4106f35240>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b4106f352d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b4106f35360>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b4106f353f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b4106f35480>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b4106f35510>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b4106f355a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b41070cbec0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1714520372426737793,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAACVy7yR9yU/M0VVPb6Krr4kM1Y7fnTaPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBeH80k4WGMAWyUTQABjAF0lEdAn0D/rWy1NXV9lChoBkdAcfNBvaURnWgHS/NoCEdAn0KN8NQTEnV9lChoBkdAcAA7LdN34mgHTRYBaAhHQJ9ER7MPjGV1fZQoaAZHQG43QEhaC+VoB0v0aAhHQJ9HEv38GcF1fZQoaAZHQG/D9jXnQppoB0v0aAhHQJ9Iizv7WNF1fZQoaAZHQHGmh+z+m3xoB00ZAWgIR0CfSk+Q2dd3dX2UKGgGR0BzlIU0vXbuaAdNBQFoCEdAn0vuuieum3V9lChoBkdAcziC7sfJWGgHS/hoCEdAn06zo+wC83V9lChoBkdAcNT3d9Dx9WgHS/1oCEdAn1BaFM7EHnV9lChoBkdAbWIWTot+TmgHTRwBaAhHQJ9SH+n62v11fZQoaAZHQEqF8YQ8OkNoB0u1aAhHQJ9TS0Z3s5Z1fZQoaAZHQHFV4yfthNNoB00WAWgIR0CfVjsnAqNIdX2UKGgGR0ByQ/avicXnaAdL7WgIR0CfV6wWnCO4dX2UKGgGR0BxUqRuCPIXaAdL5GgIR0CfWSBAOavzdX2UKGgGR0BuISEpRXOoaAdL72gIR0CfWotpEhJRdX2UKGgGR0BwH50fYBeYaAdNFgFoCEdAn11zoQnQY3V9lChoBkdAcvq/R3NcGGgHS+5oCEdAn17a86FM7HV9lChoBkdAbzbtfG+9J2gHTQoBaAhHQJ9gk5wOvuB1fZQoaAZHQHDZwxN7BwdoB0v9aAhHQJ9iFo+Ofd11fZQoaAZHQFJtOZb6guhoB0ujaAhHQJ9jEe9zwMJ1fZQoaAZHQHFePPszEaVoB0vyaAhHQJ9l0Yl6Z6V1fZQoaAZHQG3/ioS+QEJoB02mAmgIR0Cfar6w+t8vdX2UKGgGR0Bvh40fozN2aAdNDAFoCEdAn26gIdELIHV9lChoBkdAcSgpLmITG2gHS/RoCEdAn3DadpZfUnV9lChoBkdAT/23Sa3I/GgHS9doCEdAn3Isgpz90nV9lChoBkdAcmeMQVbiZWgHS/9oCEdAn3PCXD3ueHV9lChoBkdAcDyN6PbO/2gHTQoBaAhHQJ92oJu2qkx1fZQoaAZHQG++E1VHWjJoB0viaAhHQJ939XEIgNh1fZQoaAZHQHHKju0CzTpoB00JAWgIR0CfebFlkH2RdX2UKGgGR0BtKIkLQXyiaAdL82gIR0Cfex495hScdX2UKGgGR0BwXC4YrJ8waAdL8GgIR0CffKV0cOsldX2UKGgGR0BUHNaY/mknaAdLqmgIR0Cffu0+1SfldX2UKGgGR0Bw26KekHlfaAdL/WgIR0CfgHTot+TedX2UKGgGR0BxILTjNpudaAdL3WgIR0Cfgd5J9RaYdX2UKGgGR0BxkIx20Re1aAdNAAFoCEdAn4Nd/e+EiHV9lChoBkdAUVaqS5iEx2gHS9JoCEdAn4XrVOKwZHV9lChoBkdAbn4T0QK8c2gHTRUBaAhHQJ+HkIjW07d1fZQoaAZHQHCJ9RWLgoBoB0vwaAhHQJ+JFpYcNpd1fZQoaAZHQHFCBn8KohpoB000AWgIR0Cfiugk1MufdX2UKGgGR0BwjcOiFj/daAdNFgFoCEdAn437+glF+nV9lChoBkdAcNiMvysjmmgHTQYBaAhHQJ+PgymALAp1fZQoaAZHQHHYbgn+hoNoB01qAWgIR0CfkdwSJ0nxdX2UKGgGR0BweATpPhybaAdL+2gIR0Cfk2hSLqD9dX2UKGgGR0Bw/0fgaWHDaAdL/2gIR0CflkYlIEr5dX2UKGgGR0BwgL987ZFoaAdL2GgIR0Cfl5ho/RmcdX2UKGgGR0BP0sFMZgogaAdLxWgIR0CfmNzLOiWWdX2UKGgGR0BxFdQemvW6aAdL4WgIR0Cfmsz3AVO9dX2UKGgGR0BRbC8e0XxfaAdLuWgIR0Cfnglv60pmdX2UKGgGR0BvDT1/Ue+3aAdNHgFoCEdAn6BxIOH313V9lChoBkdAcGbh4dIXj2gHTRABaAhHQJ+ibfTCtRx1fZQoaAZHQE7BmYBvJiloB0vMaAhHQJ+jsL9deIF1fZQoaAZHQGwA/1g6U7loB01EAmgIR0CfqIy6MBIXdX2UKGgGR0A1oFXq7iAEaAdLwmgIR0CfqbSBbwBpdX2UKGgGR0BufkRradtmaAdNDwFoCEdAn6tW8dxQznV9lChoBkdAcWZhakhzNmgHS+VoCEdAn64lG9YfXHV9lChoBkdAMiqxgRbr1WgHS8FoCEdAn68/5YYBNnV9lChoBkdAcgAzDXOGCmgHTQQBaAhHQJ+w5vvSc9Z1fZQoaAZHQG8pMpG4I8hoB0v1aAhHQJ+yXpV0cOt1fZQoaAZHQFB83X7Lt/poB0vJaAhHQJ+zmGZeAut1fZQoaAZHQGyA9Oh0yQBoB0vaaAhHQJ+2SJVKf4B1fZQoaAZHQGx19upCKJloB01KAmgIR0CfufjLjghsdX2UKGgGR0BSTWyC4BmxaAdLp2gIR0Cfuw1XvH94dX2UKGgGR0BxpvmvGIbgaAdNPQFoCEdAn75VymygPHV9lChoBkdAb/yI9kjHGWgHTRQBaAhHQJ/AHG0eEIx1fZQoaAZHQHBbYWpIczZoB00NAWgIR0Cfwcf5DZ13dX2UKGgGR0BuTz4gzP8iaAdL8GgIR0Cfw0FFUhmodX2UKGgGR0BxhsccU/OdaAdL32gIR0Cfxckq+ajOdX2UKGgGR0BxtYuDjBEbaAdNEwFoCEdAn8eisr/bTXV9lChoBkdAbP4vovBacWgHTQABaAhHQJ/JZAprk811fZQoaAZHQHGA9qtYB/9oB0v6aAhHQJ/LXurp7kZ1fZQoaAZHQG2cvMjeKsNoB00eAWgIR0Cfz3S1Vo6CdX2UKGgGR0Btj4w7DEWJaAdL+mgIR0Cf0ag+QlrudX2UKGgGR0Byut67dznzaAdL+WgIR0Cf0y4fwI+odX2UKGgGR0BxGI9TxXnyaAdL9WgIR0Cf1KAdGRV7dX2UKGgGR0BwRJaB7NSqaAdNFQFoCEdAn9fUo0ALiXV9lChoBkdAb++ZeAuqWGgHTQABaAhHQJ/ZWs+3Yth1fZQoaAZHQHCwDlPrOZ9oB00VAWgIR0Cf2vXp4bCKdX2UKGgGR0BtGMeKbaysaAdL8mgIR0Cf3Iwx33YddX2UKGgGR0BwI/QF9roGaAdNBAFoCEdAn9+Op4rz5HV9lChoBkdASjB88cMmW2gHS5poCEdAn+B7aAWi13V9lChoBkdARs/Sx7iQ1mgHS8BoCEdAn+Gc7U5MlHV9lChoBkdAcS9W7voeP2gHTQYBaAhHQJ/jUXBP9DR1fZQoaAZHQHEmPGZNO/NoB0v8aAhHQJ/mVKcurZJ1fZQoaAZHQHA0CnLq2SdoB00EAWgIR0Cf5+9tMwlCdX2UKGgGR0ByU9Z5iVjaaAdL82gIR0Cf6WEWIoE0dX2UKGgGR0BuGNQfp2U0aAdL6WgIR0Cf6tRigCfZdX2UKGgGR0BC0606YE4eaAdLwmgIR0Cf7AVHnU2DdX2UKGgGR0ByUulImPYGaAdL72gIR0Cf7uFjNIK/dX2UKGgGR0Bv7RdhRZU2aAdNGQFoCEdAn/CcQumJnHV9lChoBkdAcVyrt3OfNGgHTS0BaAhHQJ/ybYL9deJ1fZQoaAZHQHAPUJv5xipoB0vbaAhHQJ/z5PFefI11fZQoaAZHQG1AH+Q2dd5oB02BAWgIR0Cf93YxL0z1dX2UKGgGR0BMNHVG0/noaAdLwWgIR0Cf+KauwHJLdX2UKGgGR0Bw7AQYk3S8aAdNCwFoCEdAn/qOX/o7m3V9lChoBkdAbXoI68xsVWgHS+poCEdAn/4fY4ACGXV9lChoBkdARFjgZTAFgWgHS8RoCEdAn//KOLiuMnV9lChoBkdAb2DZFocrAmgHTTQBaAhHQKABLiYsunN1fZQoaAZHQG8ZVEmY0EZoB0vraAhHQKAB9svZh8Z1fZQoaAZHQGFKTIeYD1ZoB03oA2gIR0CgBdgrxy4ndX2UKGgGR0A7/pVCHARDaAdL1WgIR0CgBoe1Bt1qdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05acff59e009ced152a7a03f6fad56c13ba5b28928d81f6ad96ce80392e0e692
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b684a282080bae6a4bdbbefb65366d0caf9db3c8e00680d836817584d3688fd3
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (170 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 263.22813523233225, "std_reward": 27.341638497429514, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-01T00:20:31.369790"}
|