Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: ibm-granite/granite-3.0-2b-instruct
|
3 |
+
library_name: transformers
|
4 |
+
fine_tuning: LORA
|
5 |
+
datasets: hawky-fb-marketing-hooks
|
6 |
+
license: other
|
7 |
+
tags:
|
8 |
+
- llama-cpp
|
9 |
+
- ibm
|
10 |
+
- ibm-granite
|
11 |
+
- ibm-granite-2B
|
12 |
+
- GGUF
|
13 |
+
approach:
|
14 |
+
- Data set preperation
|
15 |
+
- RAG setup for Fetching Marketing Data (Meta and Google)
|
16 |
+
- Create KM for the dataset too
|
17 |
+
|
18 |
+
|
19 |
+
---
|
20 |
+
# Sri-Vigneshwar-DJ/ibm-granite-3.0-2b-GGUF
|
21 |
+
This model was converted to GGUF format from [`granite-3.0-2b-instruct`](https://huggingface.co/ibm-granite/granite-3.0-2b-instruct) using llama.cpp
|
22 |
+
Refer to the [original model card](https://huggingface.co/granite-3.0-2b-instruct) for more details on the model.
|
23 |
+
|
24 |
+
## Use with llama.cpp
|
25 |
+
Install llama.cpp through brew (works on Mac and Linux) from []
|
26 |
+
|
27 |
+
```bash
|
28 |
+
brew install llama.cpp or !git clone https://github.com/ggerganov/llama.cpp.git
|
29 |
+
|
30 |
+
```
|
31 |
+
Invoke the llama.cpp server or the CLI.
|
32 |
+
|
33 |
+
or
|
34 |
+
|
35 |
+
### CLI:
|
36 |
+
```bash
|
37 |
+
! /content/llama.cpp/llama-cli -m ./quantized_model/FP16.gguf/ibm-granite-3.0-2b-GGUF -n 90 --repeat_penalty 1.0 --color -i -r "User:" -f /content/llama.cpp/prompts/chat-with-bob.txt
|
38 |
+
|
39 |
+
or
|
40 |
+
|
41 |
+
llama-cli --hf-repo Sri-Vigneshwar-DJ/ibm-granite-3.0-2b-GGUF --hf-file FP16.gguf -p "The meaning to life and the universe is"
|
42 |
+
```
|
43 |
+
|
44 |
+
### Server:
|
45 |
+
```bash
|
46 |
+
llama-server --hf-repo Sri-Vigneshwar-DJ/ibm-granite-3.0-2b-GGUF --hf-file FP8.gguf -c 2048
|
47 |
+
```
|
48 |
+
|
49 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
50 |
+
|
51 |
+
Step 1: Clone llama.cpp from GitHub.
|
52 |
+
```
|
53 |
+
git clone https://github.com/ggerganov/llama.cpp
|
54 |
+
```
|
55 |
+
|
56 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag or ''!make GGML_OPENBLAS=1' along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
57 |
+
```
|
58 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
59 |
+
|
60 |
+
or
|
61 |
+
|
62 |
+
!make GGML_OPENBLAS=1
|
63 |
+
```
|
64 |
+
|
65 |
+
Step 3: Run inference through the main binary.
|
66 |
+
```
|
67 |
+
./llama-cli --hf-repo Sri-Vigneshwar-DJ/ibm-granite-3.0-2b-GGUF --hf-file FP8.gguf -p "Hi, Generate a detailed insight on 2024 Meta Campaigns"
|
68 |
+
```
|
69 |
+
or
|
70 |
+
```
|
71 |
+
./llama-server --hf-repo Sri-Vigneshwar-DJ/ibm-granite-3.0-2b-GGUF --hf-file sFP8.gguf -c 2048
|
72 |
+
```
|