Sri-Vigneshwar-DJ commited on
Commit
ece5448
·
verified ·
1 Parent(s): d378364

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.0-2b-instruct
3
+ library_name: transformers
4
+ fine_tuning: LORA
5
+ datasets: hawky-fb-marketing-hooks
6
+ license: other
7
+ tags:
8
+ - llama-cpp
9
+ - ibm
10
+ - ibm-granite
11
+ - ibm-granite-2B
12
+ - GGUF
13
+ approach:
14
+ - Data set preperation
15
+ - RAG setup for Fetching Marketing Data (Meta and Google)
16
+ - Create KM for the dataset too
17
+
18
+
19
+ ---
20
+ # Sri-Vigneshwar-DJ/ibm-granite-3.0-2b-GGUF
21
+ This model was converted to GGUF format from [`granite-3.0-2b-instruct`](https://huggingface.co/ibm-granite/granite-3.0-2b-instruct) using llama.cpp
22
+ Refer to the [original model card](https://huggingface.co/granite-3.0-2b-instruct) for more details on the model.
23
+
24
+ ## Use with llama.cpp
25
+ Install llama.cpp through brew (works on Mac and Linux) from []
26
+
27
+ ```bash
28
+ brew install llama.cpp or !git clone https://github.com/ggerganov/llama.cpp.git
29
+
30
+ ```
31
+ Invoke the llama.cpp server or the CLI.
32
+
33
+ or
34
+
35
+ ### CLI:
36
+ ```bash
37
+ ! /content/llama.cpp/llama-cli -m ./quantized_model/FP16.gguf/ibm-granite-3.0-2b-GGUF -n 90 --repeat_penalty 1.0 --color -i -r "User:" -f /content/llama.cpp/prompts/chat-with-bob.txt
38
+
39
+ or
40
+
41
+ llama-cli --hf-repo Sri-Vigneshwar-DJ/ibm-granite-3.0-2b-GGUF --hf-file FP16.gguf -p "The meaning to life and the universe is"
42
+ ```
43
+
44
+ ### Server:
45
+ ```bash
46
+ llama-server --hf-repo Sri-Vigneshwar-DJ/ibm-granite-3.0-2b-GGUF --hf-file FP8.gguf -c 2048
47
+ ```
48
+
49
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
50
+
51
+ Step 1: Clone llama.cpp from GitHub.
52
+ ```
53
+ git clone https://github.com/ggerganov/llama.cpp
54
+ ```
55
+
56
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag or ''!make GGML_OPENBLAS=1' along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
57
+ ```
58
+ cd llama.cpp && LLAMA_CURL=1 make
59
+
60
+ or
61
+
62
+ !make GGML_OPENBLAS=1
63
+ ```
64
+
65
+ Step 3: Run inference through the main binary.
66
+ ```
67
+ ./llama-cli --hf-repo Sri-Vigneshwar-DJ/ibm-granite-3.0-2b-GGUF --hf-file FP8.gguf -p "Hi, Generate a detailed insight on 2024 Meta Campaigns"
68
+ ```
69
+ or
70
+ ```
71
+ ./llama-server --hf-repo Sri-Vigneshwar-DJ/ibm-granite-3.0-2b-GGUF --hf-file sFP8.gguf -c 2048
72
+ ```