ppo-LunarLander-v2 / config.json
Srinjoy's picture
first ever model upload
29008d4
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f398c147640>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f398c1476d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f398c147760>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f398c1477f0>", "_build": "<function ActorCriticPolicy._build at 0x7f398c147880>", "forward": "<function ActorCriticPolicy.forward at 0x7f398c147910>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f398c1479a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f398c147a30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f398c147ac0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f398c147b50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f398c147be0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f398c147c70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f398c149a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687600896909026601, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMeA71siYE8fQz+vSkHbL5aPw+9u2yKuwAAAAAAAAAAGuY+vju3Lz86JKs85Qydvm/B/71s5T4+AAAAAAAAAADN7CW9e0KmukRKBLe6leqx9gQ4OqjMFzYAAIA/AACAP03YVr2cvVO8/khPPesU3Ls8dxY93jM8PgAAgD8AAIA/UsmHvnifFz9V/u88Grq0vpm+373glFE9AAAAAAAAAACaV0w8Ll2bP53WVTy28Oy+L2gQPYJQCL0AAAAAAAAAAC1fWb7gYNA+Jcl+PWw8k75z9Jy9maypvAAAAAAAAAAAGkjFPXfjcj4qsj2+dOOBvlsPKTwq3Zm7AAAAAAAAAABmyIW8IZKvvFYbwTwyBVI9MNoGPq3OZrwAAIA/AACAP83Luj3Xkwm5w5Nqu2c+3Lal05A6CIuLOgAAgD8AAAAALR5Avohl/T2aXjk+ADvPvXyXjjySa7E8AAAAAAAAAAAzrES99nQ6ulsya7hN7V+z0QwFOjBVizcAAIA/AACAP81gZDxcY0u6PQeZsx+Ad68Gx0M635TGMwAAgD8AAIA/mkbkvAMhEbzHWwG9isUGPYpHobzs7cg6AACAPwAAgD/NOAE+l58SPhZ5cb7wn2++r/vBvJ3yYL0AAAAAAAAAANqsob1pqxC8+mWduRdOWj1Wfm09EsOCvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHN5MyBTXJ6MAWyUTVEBjAF0lEdAmzJYzSCvo3V9lChoBkdAbN14REnb7GgHTRABaAhHQJszlAVwgkl1fZQoaAZHQHCI0dRzijtoB03vAWgIR0CbNQZy+6AfdX2UKGgGR0BylEz67/XHaAdNCgFoCEdAmzU7gKnei3V9lChoBkdAcH2Gza9K3GgHTSIBaAhHQJs1YlruYyB1fZQoaAZHQGpZnbypaRpoB02bAWgIR0CbNXlFc6eYdX2UKGgGR0BvVoSSNfgKaAdL/GgIR0CbNbQpF1B/dX2UKGgGR0Bc/n7xd6cBaAdN6ANoCEdAmzg05hjOLXV9lChoBkdAa/RDbah6B2gHTQUBaAhHQJs4XKdQO4J1fZQoaAZHQHEF6rWAf+1oB00JAWgIR0CbOMlV94NadX2UKGgGR0BwAHC0ngHeaAdL/mgIR0CbOYKjzqbCdX2UKGgGR0BwHo0zj3mFaAdL/2gIR0CbOdu7YkE+dX2UKGgGR0BwZ8jhUBGQaAdNRAFoCEdAmzn5S75EdHV9lChoBkdARJsiY9gWrWgHS8xoCEdAmzofhqCYkXV9lChoBkdAcEOTUAksz2gHTR8BaAhHQJs7SBUaQ3h1fZQoaAZHQHIq06HTI/9oB00MAWgIR0CbO4WGATZhdX2UKGgGR0Bt6CCHymQ9aAdNFQFoCEdAm0C2EwnIAHV9lChoBkdAcXntXPqs2mgHTUQBaAhHQJtA8dV/+bV1fZQoaAZHQG8HgyVObiJoB00PAWgIR0CbQSmcOLBLdX2UKGgGR0Bwiqjk+5e7aAdNGgFoCEdAm0FSHymQ83V9lChoBkdAbp804zabnWgHTR4BaAhHQJtCM6JZW7x1fZQoaAZHQHJnVR51Ng1oB0v2aAhHQJtC/IdU83d1fZQoaAZHQG+im2sq8UVoB0v2aAhHQJtDH+vQnhN1fZQoaAZHQG4/wi7kGRpoB0v5aAhHQJtEgr8R+Sd1fZQoaAZHQHI6PZ7HAARoB01lAWgIR0CbRQKDkELZdX2UKGgGR0BzuLWTX8O1aAdNLAFoCEdAm0YLzbvgFXV9lChoBkdAcglE/SpiqmgHTSkBaAhHQJtHbUhFEzB1fZQoaAZHQHB6Lw8W9DhoB00zAWgIR0CbR5UHIIWydX2UKGgGR0BwyNwEQoTgaAdNEgFoCEdAm0fQMlTm4nV9lChoBkdAb/GHfuTibWgHTToBaAhHQJtIBm6Gxlh1fZQoaAZHQHB1o4MnZ01oB00oAWgIR0CbSNTN+so2dX2UKGgGR0BuY5uyeI2waAdL+mgIR0CbSyMrVe8gdX2UKGgGR0BwC4iD/VAiaAdNIwFoCEdAm0xut8uzyHV9lChoBkdAcYSbsF+uvGgHTRQBaAhHQJtMzsY2sJZ1fZQoaAZHQHHQ4+0PYnRoB00FAWgIR0CbTN6V+qiodX2UKGgGR0BvheyX2M86aAdNCAFoCEdAm00S8an753V9lChoBkdAcSAGdZq20GgHTUABaAhHQJtNPn5i3G51fZQoaAZHQGJPeH8CPp9oB03oA2gIR0CbTeXvphWpdX2UKGgGR0BskLJOnEVGaAdNDAFoCEdAm05ovvjOs3V9lChoBkdAcmURPXTVlWgHTWcBaAhHQJtOv0UXYUZ1fZQoaAZHQHEGwC4jKPpoB00hAWgIR0CbT7mZVn27dX2UKGgGR0Byvm6kIomYaAdNSQFoCEdAm0/ojbBXS3V9lChoBkdAcmDApazNU2gHTQwBaAhHQJtQMSGrS3N1fZQoaAZHQHHAnJDE3sJoB00XAWgIR0CbUJrHEMspdX2UKGgGR0Bw64Jv5xioaAdNIgFoCEdAm1GOyVv/BHV9lChoBkdAcTW6XjU/fWgHTWEBaAhHQJtj+CUX5311fZQoaAZHQHELSv1UVBVoB0v4aAhHQJtkRRvWH1x1fZQoaAZHQHHaxhQWN3poB01yAWgIR0CbZI/ZuhsZdX2UKGgGR0BwM8uRLbpNaAdL5WgIR0CbZMYGt6omdX2UKGgGR0BwR4Q2/BWQaAdNCAFoCEdAm2YOYIBzWHV9lChoBkdAchKsrNGEwmgHTRoBaAhHQJtmhgssg+11fZQoaAZHQHJOrBXS0BxoB006AWgIR0CbZ/LwWnCPdX2UKGgGR0BwAoZk078vaAdNQwFoCEdAm2gQOOKfnXV9lChoBkdActbyMDOkcmgHTSkBaAhHQJtoGhew9q11fZQoaAZHQHE5RbOeJ55oB00dAWgIR0CbaED+R5kcdX2UKGgGR0BLIUFB6a9caAdLw2gIR0CbaNSMLncMdX2UKGgGR0Bvk7m2b5M2aAdL/WgIR0CbaQ5zHS4OdX2UKGgGR0ByNYxM36yjaAdNMQFoCEdAm2kfu5SWJXV9lChoBkdAcjALiuMdcWgHTRwBaAhHQJtplo+Ofd11fZQoaAZHQHJpSFCb+cZoB00yAWgIR0CbagNOM2m6dX2UKGgGR0BtQFlkH2RJaAdNNwFoCEdAm2r8BZIQOHV9lChoBkdAcLQFR51Ng2gHS/5oCEdAm2tbfgrH2nV9lChoBkdAcd30jTrmhmgHTS4BaAhHQJtsbnLaEjB1fZQoaAZHQHCw44ZMtbtoB00oAWgIR0CbbNTBInSfdX2UKGgGR0BsEXNVzZHvaAdNIQFoCEdAm2zeAI6bOXV9lChoBkdAcA6mkWRA8mgHS/poCEdAm20W5hBqsXV9lChoBkdAceGU5MlC1WgHTQMBaAhHQJttw+6iCat1fZQoaAZHQHElyp71Iy1oB00UAWgIR0Cbb9hTOxB3dX2UKGgGR0BwGzvttyggaAdL9mgIR0CbcBSWZ7XydX2UKGgGR0ByeT9DQZ4waAdNKwFoCEdAm3CWt+1Bt3V9lChoBkdAcImJVsDW9WgHTTgBaAhHQJtxDseGO+91fZQoaAZHQHO05BomG/NoB001AWgIR0CbcWFvAGjcdX2UKGgGR0BwBcxagVXWaAdNHgFoCEdAm3KUCvHLinV9lChoBkdAcjvlKsdT52gHTREBaAhHQJtyuff4yoJ1fZQoaAZHQHAqYRywOe9oB01KAWgIR0Cbc6lv60pmdX2UKGgGR0BwaSQ3gk1NaAdNBwFoCEdAm3P2b1AZ9HV9lChoBkdAcI3+AVfu1GgHS/5oCEdAm3Qr0jC53HV9lChoBkdAbDeM5wOvuGgHTWUBaAhHQJt0eml67d11fZQoaAZHQHFfv9YOlO5oB00IAWgIR0Cbdf9aUzKtdX2UKGgGR0Bx7WPHT7VKaAdNCwFoCEdAm3cLJOnEVHV9lChoBkdAcnJ4SYgJTmgHTSIBaAhHQJt3nh1klNV1fZQoaAZHQHGINOqNp/RoB00vAWgIR0CbeBlme18cdX2UKGgGR0BuKqRQrMC+aAdNDgFoCEdAm3gwMH8jzXV9lChoBkdAcVG83uNPxmgHTSoBaAhHQJt8TfGdZq51fZQoaAZHQHIUNT1kDp1oB00ZAWgIR0CbfI6QNkOJdX2UKGgGR0BwBnsiSq2jaAdNDwFoCEdAm3zmjj7yhHV9lChoBkdAbx+PEsJ6Y2gHS/hoCEdAm30K90zTF3V9lChoBkdAcdzZrHlwLmgHTQoBaAhHQJt9+VPepGZ1fZQoaAZHQHIZ1W4mTkhoB01NAWgIR0Cbfj/WlMyrdX2UKGgGR0BymNxHXmNjaAdNOgFoCEdAm36Debd8A3V9lChoBkdAcaUSRKYiPmgHTQYBaAhHQJt/NBu4wyt1fZQoaAZHQGyFELQXyiFoB00TAWgIR0Cbf0LeANG3dX2UKGgGR0BRqs274BV/aAdL0GgIR0CbgK3cpLEldX2UKGgGR0BwTirFOwgUaAdNLQFoCEdAm4EypaRp13V9lChoBkdAc11FL39JjGgHTQoBaAhHQJuBZqqOtGN1fZQoaAZHQHLn8N2C/XZoB01EAWgIR0CbgZxRVIZqdX2UKGgGR0Bwa67oSteVaAdNGwFoCEdAm4MFs54nnnV9lChoBkdAchCbvgFX72gHTSQBaAhHQJuECLwWnCR1fZQoaAZHQG78WepXIU9oB01AAWgIR0CbhOLwF1SwdX2UKGgGR0BxN1yxRl6JaAdNCQFoCEdAm4Y16eGwinVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}