Upload controlnet_controlnetvae.py
Browse files
controlnet/controlnet_controlnetvae.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
from torch.nn import functional as F
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
23 |
+
from diffusers.utils import BaseOutput, logging
|
24 |
+
from diffusers.models.attention_processor import (
|
25 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
26 |
+
CROSS_ATTENTION_PROCESSORS,
|
27 |
+
AttentionProcessor,
|
28 |
+
AttnAddedKVProcessor,
|
29 |
+
AttnProcessor,
|
30 |
+
)
|
31 |
+
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
32 |
+
from diffusers.models.modeling_utils import ModelMixin
|
33 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
34 |
+
CrossAttnDownBlock2D,
|
35 |
+
DownBlock2D,
|
36 |
+
UNetMidBlock2D,
|
37 |
+
UNetMidBlock2DCrossAttn,
|
38 |
+
get_down_block,
|
39 |
+
)
|
40 |
+
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
41 |
+
from diffusers.models.controlnet import ControlNetOutput
|
42 |
+
from diffusers.models import ControlNetModel
|
43 |
+
|
44 |
+
import pdb
|
45 |
+
|
46 |
+
|
47 |
+
class ControlNetVAEModel(ControlNetModel):
|
48 |
+
def forward(
|
49 |
+
self,
|
50 |
+
sample: torch.Tensor,
|
51 |
+
timestep: Union[torch.Tensor, float, int],
|
52 |
+
encoder_hidden_states: torch.Tensor,
|
53 |
+
controlnet_cond: torch.Tensor = None,
|
54 |
+
conditioning_scale: float = 1.0,
|
55 |
+
class_labels: Optional[torch.Tensor] = None,
|
56 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
57 |
+
attention_mask: Optional[torch.Tensor] = None,
|
58 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
59 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
60 |
+
guess_mode: bool = False,
|
61 |
+
return_dict: bool = True,
|
62 |
+
) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
|
63 |
+
"""
|
64 |
+
The [`ControlNetVAEModel`] forward method.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
sample (`torch.Tensor`):
|
68 |
+
The noisy input tensor.
|
69 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
70 |
+
The number of timesteps to denoise an input.
|
71 |
+
encoder_hidden_states (`torch.Tensor`):
|
72 |
+
The encoder hidden states.
|
73 |
+
controlnet_cond (`torch.Tensor`):
|
74 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
75 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
76 |
+
The scale factor for ControlNet outputs.
|
77 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
78 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
79 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
80 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
81 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
82 |
+
embeddings.
|
83 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
84 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
85 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
86 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
87 |
+
added_cond_kwargs (`dict`):
|
88 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
89 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
90 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
91 |
+
guess_mode (`bool`, defaults to `False`):
|
92 |
+
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
93 |
+
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
94 |
+
return_dict (`bool`, defaults to `True`):
|
95 |
+
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
99 |
+
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
100 |
+
returned where the first element is the sample tensor.
|
101 |
+
"""
|
102 |
+
# check channel order
|
103 |
+
|
104 |
+
|
105 |
+
channel_order = self.config.controlnet_conditioning_channel_order
|
106 |
+
|
107 |
+
if channel_order == "rgb":
|
108 |
+
# in rgb order by default
|
109 |
+
...
|
110 |
+
elif channel_order == "bgr":
|
111 |
+
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
112 |
+
else:
|
113 |
+
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
114 |
+
|
115 |
+
# prepare attention_mask
|
116 |
+
if attention_mask is not None:
|
117 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
118 |
+
attention_mask = attention_mask.unsqueeze(1)
|
119 |
+
|
120 |
+
# 1. time
|
121 |
+
timesteps = timestep
|
122 |
+
if not torch.is_tensor(timesteps):
|
123 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
124 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
125 |
+
is_mps = sample.device.type == "mps"
|
126 |
+
if isinstance(timestep, float):
|
127 |
+
dtype = torch.float32 if is_mps else torch.float64
|
128 |
+
else:
|
129 |
+
dtype = torch.int32 if is_mps else torch.int64
|
130 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
131 |
+
elif len(timesteps.shape) == 0:
|
132 |
+
timesteps = timesteps[None].to(sample.device)
|
133 |
+
|
134 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
135 |
+
timesteps = timesteps.expand(sample.shape[0])
|
136 |
+
|
137 |
+
t_emb = self.time_proj(timesteps)
|
138 |
+
|
139 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
140 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
141 |
+
# there might be better ways to encapsulate this.
|
142 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
143 |
+
|
144 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
145 |
+
aug_emb = None
|
146 |
+
|
147 |
+
if self.class_embedding is not None:
|
148 |
+
if class_labels is None:
|
149 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
150 |
+
|
151 |
+
if self.config.class_embed_type == "timestep":
|
152 |
+
class_labels = self.time_proj(class_labels)
|
153 |
+
|
154 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
155 |
+
emb = emb + class_emb
|
156 |
+
|
157 |
+
if self.config.addition_embed_type is not None:
|
158 |
+
if self.config.addition_embed_type == "text":
|
159 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
160 |
+
|
161 |
+
elif self.config.addition_embed_type == "text_time":
|
162 |
+
if "text_embeds" not in added_cond_kwargs:
|
163 |
+
raise ValueError(
|
164 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
165 |
+
)
|
166 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
167 |
+
if "time_ids" not in added_cond_kwargs:
|
168 |
+
raise ValueError(
|
169 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
170 |
+
)
|
171 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
172 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
173 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
174 |
+
|
175 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
176 |
+
add_embeds = add_embeds.to(emb.dtype)
|
177 |
+
aug_emb = self.add_embedding(add_embeds)
|
178 |
+
|
179 |
+
|
180 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
181 |
+
# 2. pre-process
|
182 |
+
sample = self.conv_in(sample)
|
183 |
+
|
184 |
+
# 3. down
|
185 |
+
down_block_res_samples = (sample,)
|
186 |
+
for downsample_block in self.down_blocks:
|
187 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
188 |
+
sample, res_samples = downsample_block(
|
189 |
+
hidden_states=sample,
|
190 |
+
temb=emb,
|
191 |
+
encoder_hidden_states=encoder_hidden_states,
|
192 |
+
attention_mask=attention_mask,
|
193 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
194 |
+
)
|
195 |
+
else:
|
196 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
197 |
+
|
198 |
+
down_block_res_samples += res_samples
|
199 |
+
|
200 |
+
# 4. mid
|
201 |
+
if self.mid_block is not None:
|
202 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
203 |
+
sample = self.mid_block(
|
204 |
+
sample,
|
205 |
+
emb,
|
206 |
+
encoder_hidden_states=encoder_hidden_states,
|
207 |
+
attention_mask=attention_mask,
|
208 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
209 |
+
)
|
210 |
+
else:
|
211 |
+
sample = self.mid_block(sample, emb)
|
212 |
+
|
213 |
+
# 5. Control net blocks
|
214 |
+
|
215 |
+
controlnet_down_block_res_samples = ()
|
216 |
+
|
217 |
+
# NOTE that controlnet downblock is zeroconv, we discard
|
218 |
+
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
219 |
+
down_block_res_sample = down_block_res_sample
|
220 |
+
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
221 |
+
|
222 |
+
down_block_res_samples = controlnet_down_block_res_samples
|
223 |
+
|
224 |
+
mid_block_res_sample = sample
|
225 |
+
|
226 |
+
# 6. scaling
|
227 |
+
if guess_mode and not self.config.global_pool_conditions:
|
228 |
+
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
229 |
+
scales = scales * conditioning_scale
|
230 |
+
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
|
231 |
+
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
232 |
+
else:
|
233 |
+
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
234 |
+
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
235 |
+
|
236 |
+
if self.config.global_pool_conditions:
|
237 |
+
down_block_res_samples = [
|
238 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
239 |
+
]
|
240 |
+
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
241 |
+
|
242 |
+
if not return_dict:
|
243 |
+
return (down_block_res_samples, mid_block_res_sample)
|
244 |
+
|
245 |
+
return ControlNetOutput(
|
246 |
+
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
247 |
+
)
|
248 |
+
|
249 |
+
|
250 |
+
|