|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders.single_file_model import FromOriginalModelMixin |
|
from diffusers.utils import BaseOutput, logging |
|
from diffusers.models.attention_processor import ( |
|
ADDED_KV_ATTENTION_PROCESSORS, |
|
CROSS_ATTENTION_PROCESSORS, |
|
AttentionProcessor, |
|
AttnAddedKVProcessor, |
|
AttnProcessor, |
|
) |
|
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.unets.unet_2d_blocks import ( |
|
CrossAttnDownBlock2D, |
|
DownBlock2D, |
|
UNetMidBlock2D, |
|
UNetMidBlock2DCrossAttn, |
|
get_down_block, |
|
) |
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel |
|
from diffusers.models.controlnet import ControlNetOutput |
|
from diffusers.models import ControlNetModel |
|
|
|
import pdb |
|
|
|
|
|
class ControlNetVAEModel(ControlNetModel): |
|
def forward( |
|
self, |
|
sample: torch.Tensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
controlnet_cond: torch.Tensor = None, |
|
conditioning_scale: float = 1.0, |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guess_mode: bool = False, |
|
return_dict: bool = True, |
|
) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]: |
|
""" |
|
The [`ControlNetVAEModel`] forward method. |
|
|
|
Args: |
|
sample (`torch.Tensor`): |
|
The noisy input tensor. |
|
timestep (`Union[torch.Tensor, float, int]`): |
|
The number of timesteps to denoise an input. |
|
encoder_hidden_states (`torch.Tensor`): |
|
The encoder hidden states. |
|
controlnet_cond (`torch.Tensor`): |
|
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. |
|
conditioning_scale (`float`, defaults to `1.0`): |
|
The scale factor for ControlNet outputs. |
|
class_labels (`torch.Tensor`, *optional*, defaults to `None`): |
|
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. |
|
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): |
|
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the |
|
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep |
|
embeddings. |
|
attention_mask (`torch.Tensor`, *optional*, defaults to `None`): |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask |
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large |
|
negative values to the attention scores corresponding to "discard" tokens. |
|
added_cond_kwargs (`dict`): |
|
Additional conditions for the Stable Diffusion XL UNet. |
|
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): |
|
A kwargs dictionary that if specified is passed along to the `AttnProcessor`. |
|
guess_mode (`bool`, defaults to `False`): |
|
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if |
|
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended. |
|
return_dict (`bool`, defaults to `True`): |
|
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.controlnet.ControlNetOutput`] **or** `tuple`: |
|
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is |
|
returned where the first element is the sample tensor. |
|
""" |
|
|
|
|
|
|
|
channel_order = self.config.controlnet_conditioning_channel_order |
|
|
|
if channel_order == "rgb": |
|
|
|
... |
|
elif channel_order == "bgr": |
|
controlnet_cond = torch.flip(controlnet_cond, dims=[1]) |
|
else: |
|
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}") |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=sample.dtype) |
|
|
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
aug_emb = None |
|
|
|
if self.class_embedding is not None: |
|
if class_labels is None: |
|
raise ValueError("class_labels should be provided when num_class_embeds > 0") |
|
|
|
if self.config.class_embed_type == "timestep": |
|
class_labels = self.time_proj(class_labels) |
|
|
|
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) |
|
emb = emb + class_emb |
|
|
|
if self.config.addition_embed_type is not None: |
|
if self.config.addition_embed_type == "text": |
|
aug_emb = self.add_embedding(encoder_hidden_states) |
|
|
|
elif self.config.addition_embed_type == "text_time": |
|
if "text_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
text_embeds = added_cond_kwargs.get("text_embeds") |
|
if "time_ids" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" |
|
) |
|
time_ids = added_cond_kwargs.get("time_ids") |
|
time_embeds = self.add_time_proj(time_ids.flatten()) |
|
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) |
|
|
|
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) |
|
add_embeds = add_embeds.to(emb.dtype) |
|
aug_emb = self.add_embedding(add_embeds) |
|
|
|
|
|
emb = emb + aug_emb if aug_emb is not None else emb |
|
|
|
sample = self.conv_in(sample) |
|
|
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
|
|
if self.mid_block is not None: |
|
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: |
|
sample = self.mid_block( |
|
sample, |
|
emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
else: |
|
sample = self.mid_block(sample, emb) |
|
|
|
|
|
|
|
controlnet_down_block_res_samples = () |
|
|
|
|
|
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): |
|
down_block_res_sample = down_block_res_sample |
|
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,) |
|
|
|
down_block_res_samples = controlnet_down_block_res_samples |
|
|
|
mid_block_res_sample = sample |
|
|
|
|
|
if guess_mode and not self.config.global_pool_conditions: |
|
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) |
|
scales = scales * conditioning_scale |
|
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)] |
|
mid_block_res_sample = mid_block_res_sample * scales[-1] |
|
else: |
|
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] |
|
mid_block_res_sample = mid_block_res_sample * conditioning_scale |
|
|
|
if self.config.global_pool_conditions: |
|
down_block_res_samples = [ |
|
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples |
|
] |
|
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True) |
|
|
|
if not return_dict: |
|
return (down_block_res_samples, mid_block_res_sample) |
|
|
|
return ControlNetOutput( |
|
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample |
|
) |
|
|
|
|
|
|
|
|