zhjohnchan
commited on
Commit
·
b09211c
1
Parent(s):
0f2d77c
Upload 3 files
Browse files- configuration_chexagent.py +180 -0
- modeling_chexagent.py +1300 -0
- processing_chexagent.py +126 -0
configuration_chexagent.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The CheXagent Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from typing import Union
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.models.auto import CONFIG_MAPPING
|
21 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
class CheXagentVisionConfig(PretrainedConfig):
|
28 |
+
model_type = "chexagent_vision_model"
|
29 |
+
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
hidden_size=1408,
|
33 |
+
intermediate_size=6144,
|
34 |
+
num_hidden_layers=39,
|
35 |
+
num_attention_heads=16,
|
36 |
+
image_size=224,
|
37 |
+
patch_size=14,
|
38 |
+
hidden_act="gelu",
|
39 |
+
layer_norm_eps=1e-6,
|
40 |
+
attention_dropout=0.0,
|
41 |
+
initializer_range=1e-10,
|
42 |
+
qkv_bias=True,
|
43 |
+
**kwargs,
|
44 |
+
):
|
45 |
+
super().__init__(**kwargs)
|
46 |
+
|
47 |
+
self.hidden_size = hidden_size
|
48 |
+
self.intermediate_size = intermediate_size
|
49 |
+
self.num_hidden_layers = num_hidden_layers
|
50 |
+
self.num_attention_heads = num_attention_heads
|
51 |
+
self.patch_size = patch_size
|
52 |
+
self.image_size = image_size
|
53 |
+
self.initializer_range = initializer_range
|
54 |
+
self.attention_dropout = attention_dropout
|
55 |
+
self.layer_norm_eps = layer_norm_eps
|
56 |
+
self.hidden_act = hidden_act
|
57 |
+
self.qkv_bias = qkv_bias
|
58 |
+
|
59 |
+
@classmethod
|
60 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
61 |
+
cls._set_token_in_kwargs(kwargs)
|
62 |
+
|
63 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
64 |
+
|
65 |
+
if config_dict.get("model_type") == "chexagent":
|
66 |
+
config_dict = config_dict["vision_config"]
|
67 |
+
|
68 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
69 |
+
logger.warning(
|
70 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
71 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
72 |
+
)
|
73 |
+
|
74 |
+
return cls.from_dict(config_dict, **kwargs)
|
75 |
+
|
76 |
+
|
77 |
+
class CheXagentQFormerConfig(PretrainedConfig):
|
78 |
+
model_type = "chexagent_qformer"
|
79 |
+
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
vocab_size=30522,
|
83 |
+
hidden_size=768,
|
84 |
+
num_hidden_layers=12,
|
85 |
+
num_attention_heads=12,
|
86 |
+
intermediate_size=3072,
|
87 |
+
hidden_act="gelu",
|
88 |
+
hidden_dropout_prob=0.1,
|
89 |
+
attention_probs_dropout_prob=0.1,
|
90 |
+
max_position_embeddings=512,
|
91 |
+
initializer_range=0.02,
|
92 |
+
layer_norm_eps=1e-12,
|
93 |
+
pad_token_id=0,
|
94 |
+
position_embedding_type="absolute",
|
95 |
+
cross_attention_frequency=2,
|
96 |
+
encoder_hidden_size=1408,
|
97 |
+
**kwargs,
|
98 |
+
):
|
99 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
100 |
+
|
101 |
+
self.vocab_size = vocab_size
|
102 |
+
self.hidden_size = hidden_size
|
103 |
+
self.num_hidden_layers = num_hidden_layers
|
104 |
+
self.num_attention_heads = num_attention_heads
|
105 |
+
self.hidden_act = hidden_act
|
106 |
+
self.intermediate_size = intermediate_size
|
107 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
108 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
109 |
+
self.max_position_embeddings = max_position_embeddings
|
110 |
+
self.initializer_range = initializer_range
|
111 |
+
self.layer_norm_eps = layer_norm_eps
|
112 |
+
self.position_embedding_type = position_embedding_type
|
113 |
+
self.cross_attention_frequency = cross_attention_frequency
|
114 |
+
self.encoder_hidden_size = encoder_hidden_size
|
115 |
+
|
116 |
+
@classmethod
|
117 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
118 |
+
cls._set_token_in_kwargs(kwargs)
|
119 |
+
|
120 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
121 |
+
|
122 |
+
if config_dict.get("model_type") == "chexagent":
|
123 |
+
config_dict = config_dict["qformer_config"]
|
124 |
+
|
125 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
126 |
+
logger.warning(
|
127 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
128 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
129 |
+
)
|
130 |
+
|
131 |
+
return cls.from_dict(config_dict, **kwargs)
|
132 |
+
|
133 |
+
|
134 |
+
class CheXagentConfig(PretrainedConfig):
|
135 |
+
model_type = "chexagent"
|
136 |
+
|
137 |
+
def __init__(
|
138 |
+
self, vision_config=None, qformer_config=None, text_config=None, num_query_tokens=128,
|
139 |
+
num_max_images=2, **kwargs
|
140 |
+
):
|
141 |
+
super().__init__(**kwargs)
|
142 |
+
|
143 |
+
if vision_config is None:
|
144 |
+
vision_config = {}
|
145 |
+
|
146 |
+
if qformer_config is None:
|
147 |
+
qformer_config = {}
|
148 |
+
|
149 |
+
if text_config is None:
|
150 |
+
text_config = {}
|
151 |
+
|
152 |
+
self.vision_config = CheXagentVisionConfig(**vision_config)
|
153 |
+
self.qformer_config = CheXagentQFormerConfig(**qformer_config)
|
154 |
+
text_model_type = text_config["model_type"] if "model_type" in text_config else "opt"
|
155 |
+
self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
|
156 |
+
|
157 |
+
self.tie_word_embeddings = self.text_config.tie_word_embeddings
|
158 |
+
self.is_encoder_decoder = self.text_config.is_encoder_decoder
|
159 |
+
|
160 |
+
self.num_query_tokens = num_query_tokens
|
161 |
+
self.qformer_config.encoder_hidden_size = self.vision_config.hidden_size
|
162 |
+
self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
163 |
+
self.initializer_factor = 1.0
|
164 |
+
self.initializer_range = 0.02
|
165 |
+
self.num_max_images = num_max_images
|
166 |
+
|
167 |
+
@classmethod
|
168 |
+
def from_vision_qformer_text_configs(
|
169 |
+
cls,
|
170 |
+
vision_config: CheXagentVisionConfig,
|
171 |
+
qformer_config: CheXagentQFormerConfig,
|
172 |
+
text_config: PretrainedConfig,
|
173 |
+
**kwargs,
|
174 |
+
):
|
175 |
+
return cls(
|
176 |
+
vision_config=vision_config.to_dict(),
|
177 |
+
qformer_config=qformer_config.to_dict(),
|
178 |
+
text_config=text_config.to_dict(),
|
179 |
+
**kwargs,
|
180 |
+
)
|
modeling_chexagent.py
ADDED
@@ -0,0 +1,1300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The CheXagent Authors, The Salesforce Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import math
|
17 |
+
from dataclasses import dataclass
|
18 |
+
from typing import Any, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from einops import rearrange
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import CrossEntropyLoss
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.modeling_outputs import (
|
27 |
+
BaseModelOutput,
|
28 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
BaseModelOutputWithPooling,
|
30 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
31 |
+
)
|
32 |
+
from transformers.modeling_utils import PreTrainedModel
|
33 |
+
from transformers.models.auto import AutoModelForCausalLM, AutoModelForSeq2SeqLM
|
34 |
+
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
35 |
+
from transformers.utils import ModelOutput, logging
|
36 |
+
|
37 |
+
from .configuration_chexagent import CheXagentConfig, CheXagentQFormerConfig, CheXagentVisionConfig
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
|
42 |
+
@dataclass
|
43 |
+
class CheXagentForConditionalGenerationModelOutput(ModelOutput):
|
44 |
+
loss: Optional[Tuple[torch.FloatTensor]] = None
|
45 |
+
logits: Optional[Tuple[torch.FloatTensor]] = None
|
46 |
+
vision_outputs: Optional[torch.FloatTensor] = None
|
47 |
+
qformer_outputs: Optional[Tuple[torch.FloatTensor]] = None
|
48 |
+
language_model_outputs: Optional[Tuple[torch.FloatTensor]] = None
|
49 |
+
|
50 |
+
def to_tuple(self) -> Tuple[Any]:
|
51 |
+
return tuple(
|
52 |
+
self[k]
|
53 |
+
if k not in ["vision_outputs", "qformer_outputs", "language_model_outputs"]
|
54 |
+
else getattr(self, k).to_tuple()
|
55 |
+
for k in self.keys()
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
class CheXagentVisionEmbeddings(nn.Module):
|
60 |
+
def __init__(self, config: CheXagentVisionConfig):
|
61 |
+
super().__init__()
|
62 |
+
self.config = config
|
63 |
+
self.embed_dim = config.hidden_size
|
64 |
+
self.image_size = config.image_size
|
65 |
+
self.patch_size = config.patch_size
|
66 |
+
|
67 |
+
self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim))
|
68 |
+
|
69 |
+
self.patch_embedding = nn.Conv2d(
|
70 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
71 |
+
)
|
72 |
+
|
73 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
74 |
+
self.num_positions = self.num_patches + 1
|
75 |
+
|
76 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
77 |
+
|
78 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
79 |
+
batch_size = pixel_values.shape[0]
|
80 |
+
target_dtype = self.patch_embedding.weight.dtype
|
81 |
+
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
82 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
83 |
+
|
84 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
85 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
86 |
+
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype)
|
87 |
+
return embeddings
|
88 |
+
|
89 |
+
|
90 |
+
class CheXagentAttention(nn.Module):
|
91 |
+
def __init__(self, config):
|
92 |
+
super().__init__()
|
93 |
+
self.config = config
|
94 |
+
self.embed_dim = config.hidden_size
|
95 |
+
self.num_heads = config.num_attention_heads
|
96 |
+
self.head_dim = self.embed_dim // self.num_heads
|
97 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
98 |
+
raise ValueError(
|
99 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
100 |
+
f" {self.num_heads})."
|
101 |
+
)
|
102 |
+
self.scale = self.head_dim ** -0.5
|
103 |
+
self.dropout = nn.Dropout(config.attention_dropout)
|
104 |
+
|
105 |
+
# small tweak here compared to CLIP, no bias here
|
106 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=False)
|
107 |
+
|
108 |
+
if config.qkv_bias:
|
109 |
+
q_bias = nn.Parameter(torch.zeros(self.embed_dim))
|
110 |
+
v_bias = nn.Parameter(torch.zeros(self.embed_dim))
|
111 |
+
else:
|
112 |
+
q_bias = None
|
113 |
+
v_bias = None
|
114 |
+
|
115 |
+
if q_bias is not None:
|
116 |
+
qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias))
|
117 |
+
self.qkv.bias = nn.Parameter(qkv_bias)
|
118 |
+
|
119 |
+
self.projection = nn.Linear(self.embed_dim, self.embed_dim)
|
120 |
+
|
121 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
122 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
123 |
+
|
124 |
+
def forward(
|
125 |
+
self,
|
126 |
+
hidden_states: torch.Tensor,
|
127 |
+
head_mask: Optional[torch.Tensor] = None,
|
128 |
+
output_attentions: Optional[bool] = False,
|
129 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
130 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
131 |
+
|
132 |
+
mixed_qkv = self.qkv(hidden_states)
|
133 |
+
|
134 |
+
mixed_qkv = mixed_qkv.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads).permute(
|
135 |
+
2, 0, 3, 1, 4
|
136 |
+
)
|
137 |
+
query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2]
|
138 |
+
|
139 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
140 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
141 |
+
|
142 |
+
attention_scores = attention_scores * self.scale
|
143 |
+
|
144 |
+
# Normalize the attention scores to probabilities.
|
145 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
146 |
+
|
147 |
+
# This is actually dropping out entire tokens to attend to, which might
|
148 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
149 |
+
attention_probs = self.dropout(attention_probs)
|
150 |
+
|
151 |
+
# Mask heads if we want to
|
152 |
+
if head_mask is not None:
|
153 |
+
attention_probs = attention_probs * head_mask
|
154 |
+
|
155 |
+
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
|
156 |
+
|
157 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
|
158 |
+
context_layer = context_layer.reshape(new_context_layer_shape)
|
159 |
+
|
160 |
+
output = self.projection(context_layer)
|
161 |
+
|
162 |
+
outputs = (output, attention_probs) if output_attentions else (output, None)
|
163 |
+
|
164 |
+
return outputs
|
165 |
+
|
166 |
+
|
167 |
+
class CheXagentMLP(nn.Module):
|
168 |
+
def __init__(self, config):
|
169 |
+
super().__init__()
|
170 |
+
self.config = config
|
171 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
172 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
173 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
174 |
+
|
175 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
176 |
+
hidden_states = self.fc1(hidden_states)
|
177 |
+
hidden_states = self.activation_fn(hidden_states)
|
178 |
+
hidden_states = self.fc2(hidden_states)
|
179 |
+
return hidden_states
|
180 |
+
|
181 |
+
|
182 |
+
class CheXagentEncoderLayer(nn.Module):
|
183 |
+
def __init__(self, config: CheXagentConfig):
|
184 |
+
super().__init__()
|
185 |
+
self.embed_dim = config.hidden_size
|
186 |
+
self.self_attn = CheXagentAttention(config)
|
187 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
188 |
+
self.mlp = CheXagentMLP(config)
|
189 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
190 |
+
|
191 |
+
def forward(
|
192 |
+
self,
|
193 |
+
hidden_states: torch.Tensor,
|
194 |
+
attention_mask: torch.Tensor,
|
195 |
+
output_attentions: Optional[bool] = False,
|
196 |
+
) -> Tuple[torch.FloatTensor]:
|
197 |
+
residual = hidden_states
|
198 |
+
hidden_states = self.layer_norm1(hidden_states)
|
199 |
+
hidden_states, attn_weights = self.self_attn(
|
200 |
+
hidden_states=hidden_states,
|
201 |
+
head_mask=attention_mask,
|
202 |
+
output_attentions=output_attentions,
|
203 |
+
)
|
204 |
+
hidden_states = hidden_states + residual
|
205 |
+
residual = hidden_states
|
206 |
+
hidden_states = self.layer_norm2(hidden_states)
|
207 |
+
hidden_states = self.mlp(hidden_states)
|
208 |
+
|
209 |
+
hidden_states = hidden_states + residual
|
210 |
+
|
211 |
+
outputs = (hidden_states,)
|
212 |
+
|
213 |
+
if output_attentions:
|
214 |
+
outputs += (attn_weights,)
|
215 |
+
|
216 |
+
return outputs
|
217 |
+
|
218 |
+
|
219 |
+
class CheXagentPreTrainedModel(PreTrainedModel):
|
220 |
+
config_class = CheXagentConfig
|
221 |
+
base_model_prefix = "chexagent"
|
222 |
+
supports_gradient_checkpointing = True
|
223 |
+
_no_split_modules = [
|
224 |
+
"CheXagentQFormerEmbeddings",
|
225 |
+
"CheXagentAttention",
|
226 |
+
"CheXagentQFormerMultiHeadAttention",
|
227 |
+
"CheXagentQFormerSelfOutput",
|
228 |
+
]
|
229 |
+
_keep_in_fp32_modules = []
|
230 |
+
|
231 |
+
def _init_weights(self, module):
|
232 |
+
"""Initialize the weights"""
|
233 |
+
factor = self.config.initializer_range
|
234 |
+
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear):
|
235 |
+
module.weight.data.normal_(mean=0.0, std=factor)
|
236 |
+
if hasattr(module, "bias") and module.bias is not None:
|
237 |
+
module.bias.data.zero_()
|
238 |
+
|
239 |
+
if isinstance(module, CheXagentVisionEmbeddings):
|
240 |
+
if hasattr(self.config, "vision_config"):
|
241 |
+
factor = self.config.vision_config.initializer_range
|
242 |
+
nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor)
|
243 |
+
nn.init.trunc_normal_(module.class_embedding, mean=0.0, std=factor)
|
244 |
+
|
245 |
+
elif isinstance(module, nn.LayerNorm):
|
246 |
+
module.bias.data.zero_()
|
247 |
+
module.weight.data.fill_(1.0)
|
248 |
+
elif isinstance(module, nn.Linear) and module.bias is not None:
|
249 |
+
module.bias.data.zero_()
|
250 |
+
|
251 |
+
|
252 |
+
class CheXagentEncoder(nn.Module):
|
253 |
+
def __init__(self, config: CheXagentConfig):
|
254 |
+
super().__init__()
|
255 |
+
self.config = config
|
256 |
+
self.layers = nn.ModuleList([CheXagentEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
257 |
+
self.gradient_checkpointing = False
|
258 |
+
|
259 |
+
def forward(
|
260 |
+
self,
|
261 |
+
inputs_embeds,
|
262 |
+
attention_mask: Optional[torch.Tensor] = None,
|
263 |
+
output_attentions: Optional[bool] = None,
|
264 |
+
output_hidden_states: Optional[bool] = None,
|
265 |
+
return_dict: Optional[bool] = None,
|
266 |
+
) -> Union[Tuple, BaseModelOutput]:
|
267 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
268 |
+
output_hidden_states = (
|
269 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
270 |
+
)
|
271 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
272 |
+
|
273 |
+
encoder_states = () if output_hidden_states else None
|
274 |
+
all_attentions = () if output_attentions else None
|
275 |
+
hidden_states = inputs_embeds
|
276 |
+
for idx, encoder_layer in enumerate(self.layers):
|
277 |
+
if output_hidden_states:
|
278 |
+
encoder_states = encoder_states + (hidden_states,)
|
279 |
+
if self.gradient_checkpointing and self.training:
|
280 |
+
layer_outputs = self._gradient_checkpointing_func(
|
281 |
+
encoder_layer.__call__,
|
282 |
+
hidden_states,
|
283 |
+
attention_mask,
|
284 |
+
output_attentions,
|
285 |
+
)
|
286 |
+
else:
|
287 |
+
layer_outputs = encoder_layer(hidden_states, attention_mask, output_attentions=output_attentions, )
|
288 |
+
|
289 |
+
hidden_states = layer_outputs[0]
|
290 |
+
|
291 |
+
if output_attentions:
|
292 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
293 |
+
|
294 |
+
if output_hidden_states:
|
295 |
+
encoder_states = encoder_states + (hidden_states,)
|
296 |
+
|
297 |
+
if not return_dict:
|
298 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
299 |
+
return BaseModelOutput(
|
300 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
301 |
+
)
|
302 |
+
|
303 |
+
|
304 |
+
class CheXagentVisionModel(CheXagentPreTrainedModel):
|
305 |
+
main_input_name = "pixel_values"
|
306 |
+
config_class = CheXagentVisionConfig
|
307 |
+
|
308 |
+
def __init__(self, config: CheXagentVisionConfig):
|
309 |
+
super().__init__(config)
|
310 |
+
self.config = config
|
311 |
+
embed_dim = config.hidden_size
|
312 |
+
|
313 |
+
self.embeddings = CheXagentVisionEmbeddings(config)
|
314 |
+
self.encoder = CheXagentEncoder(config)
|
315 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
316 |
+
|
317 |
+
self.post_init()
|
318 |
+
|
319 |
+
def forward(
|
320 |
+
self,
|
321 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
322 |
+
output_attentions: Optional[bool] = None,
|
323 |
+
output_hidden_states: Optional[bool] = None,
|
324 |
+
return_dict: Optional[bool] = None,
|
325 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
326 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
327 |
+
output_hidden_states = (
|
328 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
329 |
+
)
|
330 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
331 |
+
|
332 |
+
if pixel_values is None:
|
333 |
+
raise ValueError("You have to specify pixel_values")
|
334 |
+
hidden_states = self.embeddings(pixel_values)
|
335 |
+
|
336 |
+
encoder_outputs = self.encoder(
|
337 |
+
inputs_embeds=hidden_states,
|
338 |
+
output_attentions=output_attentions,
|
339 |
+
output_hidden_states=output_hidden_states,
|
340 |
+
return_dict=return_dict,
|
341 |
+
)
|
342 |
+
|
343 |
+
last_hidden_state = encoder_outputs[0]
|
344 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
345 |
+
|
346 |
+
pooled_output = last_hidden_state[:, 0, :]
|
347 |
+
pooled_output = self.post_layernorm(pooled_output)
|
348 |
+
|
349 |
+
if not return_dict:
|
350 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
351 |
+
|
352 |
+
return BaseModelOutputWithPooling(
|
353 |
+
last_hidden_state=last_hidden_state,
|
354 |
+
pooler_output=pooled_output,
|
355 |
+
hidden_states=encoder_outputs.hidden_states,
|
356 |
+
attentions=encoder_outputs.attentions,
|
357 |
+
)
|
358 |
+
|
359 |
+
def get_input_embeddings(self):
|
360 |
+
return self.embeddings
|
361 |
+
|
362 |
+
|
363 |
+
class CheXagentQFormerMultiHeadAttention(nn.Module):
|
364 |
+
def __init__(self, config, is_cross_attention=False):
|
365 |
+
super().__init__()
|
366 |
+
self.config = config
|
367 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
368 |
+
raise ValueError(
|
369 |
+
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
|
370 |
+
% (config.hidden_size, config.num_attention_heads)
|
371 |
+
)
|
372 |
+
|
373 |
+
self.num_attention_heads = config.num_attention_heads
|
374 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
375 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
376 |
+
|
377 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
378 |
+
if is_cross_attention:
|
379 |
+
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
380 |
+
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
381 |
+
else:
|
382 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
383 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
384 |
+
|
385 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
386 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
387 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
388 |
+
self.max_position_embeddings = config.max_position_embeddings
|
389 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
390 |
+
self.save_attention = False
|
391 |
+
|
392 |
+
def save_attn_gradients(self, attn_gradients):
|
393 |
+
self.attn_gradients = attn_gradients
|
394 |
+
|
395 |
+
def get_attn_gradients(self):
|
396 |
+
return self.attn_gradients
|
397 |
+
|
398 |
+
def save_attention_map(self, attention_map):
|
399 |
+
self.attention_map = attention_map
|
400 |
+
|
401 |
+
def get_attention_map(self):
|
402 |
+
return self.attention_map
|
403 |
+
|
404 |
+
def transpose_for_scores(self, x):
|
405 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
406 |
+
x = x.view(*new_x_shape)
|
407 |
+
return x.permute(0, 2, 1, 3)
|
408 |
+
|
409 |
+
def forward(
|
410 |
+
self,
|
411 |
+
hidden_states,
|
412 |
+
attention_mask=None,
|
413 |
+
head_mask=None,
|
414 |
+
encoder_hidden_states=None,
|
415 |
+
encoder_attention_mask=None,
|
416 |
+
past_key_value=None,
|
417 |
+
output_attentions=False,
|
418 |
+
):
|
419 |
+
# If this is instantiated as a cross-attention module, the keys
|
420 |
+
# and values come from an encoder; the attention mask needs to be
|
421 |
+
# such that the encoder's padding tokens are not attended to.
|
422 |
+
is_cross_attention = encoder_hidden_states is not None
|
423 |
+
|
424 |
+
if is_cross_attention:
|
425 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
426 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
427 |
+
attention_mask = encoder_attention_mask
|
428 |
+
elif past_key_value is not None:
|
429 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
430 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
431 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
432 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
433 |
+
else:
|
434 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
435 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
436 |
+
|
437 |
+
mixed_query_layer = self.query(hidden_states)
|
438 |
+
|
439 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
440 |
+
|
441 |
+
past_key_value = (key_layer, value_layer)
|
442 |
+
|
443 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
444 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
445 |
+
|
446 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
447 |
+
seq_length = hidden_states.size()[1]
|
448 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
449 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
450 |
+
distance = position_ids_l - position_ids_r
|
451 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
452 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
453 |
+
|
454 |
+
if self.position_embedding_type == "relative_key":
|
455 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
456 |
+
attention_scores = attention_scores + relative_position_scores
|
457 |
+
elif self.position_embedding_type == "relative_key_query":
|
458 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
459 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
460 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
461 |
+
|
462 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
463 |
+
|
464 |
+
if attention_mask is not None:
|
465 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
466 |
+
attention_scores = attention_scores + attention_mask
|
467 |
+
|
468 |
+
# Normalize the attention scores to probabilities.
|
469 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
470 |
+
|
471 |
+
if is_cross_attention and self.save_attention:
|
472 |
+
self.save_attention_map(attention_probs)
|
473 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
474 |
+
|
475 |
+
# This is actually dropping out entire tokens to attend to, which might
|
476 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
477 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
478 |
+
|
479 |
+
# Mask heads if we want to
|
480 |
+
if head_mask is not None:
|
481 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
482 |
+
|
483 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
484 |
+
|
485 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
486 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
487 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
488 |
+
|
489 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
490 |
+
|
491 |
+
outputs = outputs + (past_key_value,)
|
492 |
+
return outputs
|
493 |
+
|
494 |
+
|
495 |
+
class CheXagentQFormerSelfOutput(nn.Module):
|
496 |
+
def __init__(self, config):
|
497 |
+
super().__init__()
|
498 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
499 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
500 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
501 |
+
|
502 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
503 |
+
hidden_states = self.dense(hidden_states)
|
504 |
+
hidden_states = self.dropout(hidden_states)
|
505 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
506 |
+
return hidden_states
|
507 |
+
|
508 |
+
|
509 |
+
class CheXagentQFormerAttention(nn.Module):
|
510 |
+
def __init__(self, config, is_cross_attention=False):
|
511 |
+
super().__init__()
|
512 |
+
self.attention = CheXagentQFormerMultiHeadAttention(config, is_cross_attention)
|
513 |
+
self.output = CheXagentQFormerSelfOutput(config)
|
514 |
+
self.pruned_heads = set()
|
515 |
+
|
516 |
+
def prune_heads(self, heads):
|
517 |
+
if len(heads) == 0:
|
518 |
+
return
|
519 |
+
heads, index = find_pruneable_heads_and_indices(
|
520 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
521 |
+
)
|
522 |
+
|
523 |
+
# Prune linear layers
|
524 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
525 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
526 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
527 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
528 |
+
|
529 |
+
# Update hyper params and store pruned heads
|
530 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
531 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
532 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
533 |
+
|
534 |
+
def forward(
|
535 |
+
self,
|
536 |
+
hidden_states: torch.Tensor,
|
537 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
538 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
539 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
540 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
541 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
542 |
+
output_attentions: Optional[bool] = False,
|
543 |
+
) -> Tuple[torch.Tensor]:
|
544 |
+
self_outputs = self.attention(
|
545 |
+
hidden_states,
|
546 |
+
attention_mask,
|
547 |
+
head_mask,
|
548 |
+
encoder_hidden_states,
|
549 |
+
encoder_attention_mask,
|
550 |
+
past_key_value,
|
551 |
+
output_attentions,
|
552 |
+
)
|
553 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
554 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
555 |
+
return outputs
|
556 |
+
|
557 |
+
|
558 |
+
class CheXagentQFormerIntermediate(nn.Module):
|
559 |
+
def __init__(self, config):
|
560 |
+
super().__init__()
|
561 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
562 |
+
if isinstance(config.hidden_act, str):
|
563 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
564 |
+
else:
|
565 |
+
self.intermediate_act_fn = config.hidden_act
|
566 |
+
|
567 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
568 |
+
hidden_states = self.dense(hidden_states)
|
569 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
570 |
+
return hidden_states
|
571 |
+
|
572 |
+
|
573 |
+
class CheXagentQFormerOutput(nn.Module):
|
574 |
+
def __init__(self, config):
|
575 |
+
super().__init__()
|
576 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
577 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
578 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
579 |
+
|
580 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
581 |
+
hidden_states = self.dense(hidden_states)
|
582 |
+
hidden_states = self.dropout(hidden_states)
|
583 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
584 |
+
return hidden_states
|
585 |
+
|
586 |
+
|
587 |
+
class CheXagentQFormerLayer(nn.Module):
|
588 |
+
def __init__(self, config, layer_idx):
|
589 |
+
super().__init__()
|
590 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
591 |
+
self.seq_len_dim = 1
|
592 |
+
self.attention = CheXagentQFormerAttention(config)
|
593 |
+
|
594 |
+
self.layer_idx = layer_idx
|
595 |
+
|
596 |
+
if layer_idx % config.cross_attention_frequency == 0:
|
597 |
+
self.crossattention = CheXagentQFormerAttention(config, is_cross_attention=True)
|
598 |
+
self.has_cross_attention = True
|
599 |
+
else:
|
600 |
+
self.has_cross_attention = False
|
601 |
+
|
602 |
+
self.intermediate_query = CheXagentQFormerIntermediate(config)
|
603 |
+
self.output_query = CheXagentQFormerOutput(config)
|
604 |
+
|
605 |
+
def forward(
|
606 |
+
self,
|
607 |
+
hidden_states,
|
608 |
+
attention_mask=None,
|
609 |
+
head_mask=None,
|
610 |
+
encoder_hidden_states=None,
|
611 |
+
encoder_attention_mask=None,
|
612 |
+
past_key_value=None,
|
613 |
+
output_attentions=False,
|
614 |
+
query_length=0,
|
615 |
+
):
|
616 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
617 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
618 |
+
self_attention_outputs = self.attention(
|
619 |
+
hidden_states,
|
620 |
+
attention_mask,
|
621 |
+
head_mask,
|
622 |
+
output_attentions=output_attentions,
|
623 |
+
past_key_value=self_attn_past_key_value,
|
624 |
+
)
|
625 |
+
attention_output = self_attention_outputs[0]
|
626 |
+
outputs = self_attention_outputs[1:-1]
|
627 |
+
|
628 |
+
present_key_value = self_attention_outputs[-1]
|
629 |
+
|
630 |
+
if query_length > 0:
|
631 |
+
query_attention_output = attention_output[:, :query_length, :]
|
632 |
+
|
633 |
+
if self.has_cross_attention:
|
634 |
+
if encoder_hidden_states is None:
|
635 |
+
raise ValueError("encoder_hidden_states must be given for cross-attention layers")
|
636 |
+
cross_attention_outputs = self.crossattention(
|
637 |
+
query_attention_output,
|
638 |
+
attention_mask,
|
639 |
+
head_mask,
|
640 |
+
encoder_hidden_states,
|
641 |
+
encoder_attention_mask,
|
642 |
+
output_attentions=output_attentions,
|
643 |
+
)
|
644 |
+
query_attention_output = cross_attention_outputs[0]
|
645 |
+
# add cross attentions if we output attention weights
|
646 |
+
outputs = outputs + cross_attention_outputs[1:-1]
|
647 |
+
|
648 |
+
layer_output = apply_chunking_to_forward(
|
649 |
+
self.feed_forward_chunk_query,
|
650 |
+
self.chunk_size_feed_forward,
|
651 |
+
self.seq_len_dim,
|
652 |
+
query_attention_output,
|
653 |
+
)
|
654 |
+
|
655 |
+
if attention_output.shape[1] > query_length:
|
656 |
+
layer_output_text = apply_chunking_to_forward(
|
657 |
+
self.feed_forward_chunk,
|
658 |
+
self.chunk_size_feed_forward,
|
659 |
+
self.seq_len_dim,
|
660 |
+
attention_output[:, query_length:, :],
|
661 |
+
)
|
662 |
+
layer_output = torch.cat([layer_output, layer_output_text], dim=1)
|
663 |
+
else:
|
664 |
+
layer_output = apply_chunking_to_forward(
|
665 |
+
self.feed_forward_chunk,
|
666 |
+
self.chunk_size_feed_forward,
|
667 |
+
self.seq_len_dim,
|
668 |
+
attention_output,
|
669 |
+
)
|
670 |
+
outputs = (layer_output,) + outputs
|
671 |
+
|
672 |
+
outputs = outputs + (present_key_value,)
|
673 |
+
|
674 |
+
return outputs
|
675 |
+
|
676 |
+
def feed_forward_chunk(self, attention_output):
|
677 |
+
intermediate_output = self.intermediate(attention_output)
|
678 |
+
layer_output = self.output(intermediate_output, attention_output)
|
679 |
+
return layer_output
|
680 |
+
|
681 |
+
def feed_forward_chunk_query(self, attention_output):
|
682 |
+
intermediate_output = self.intermediate_query(attention_output)
|
683 |
+
layer_output = self.output_query(intermediate_output, attention_output)
|
684 |
+
return layer_output
|
685 |
+
|
686 |
+
|
687 |
+
class CheXagentQFormerEncoder(nn.Module):
|
688 |
+
def __init__(self, config):
|
689 |
+
super().__init__()
|
690 |
+
self.config = config
|
691 |
+
self.layer = nn.ModuleList(
|
692 |
+
[CheXagentQFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
693 |
+
)
|
694 |
+
self.gradient_checkpointing = False
|
695 |
+
|
696 |
+
def forward(
|
697 |
+
self,
|
698 |
+
hidden_states,
|
699 |
+
attention_mask=None,
|
700 |
+
head_mask=None,
|
701 |
+
encoder_hidden_states=None,
|
702 |
+
encoder_attention_mask=None,
|
703 |
+
past_key_values=None,
|
704 |
+
use_cache=None,
|
705 |
+
output_attentions=False,
|
706 |
+
output_hidden_states=False,
|
707 |
+
return_dict=True,
|
708 |
+
query_length=0,
|
709 |
+
):
|
710 |
+
all_hidden_states = () if output_hidden_states else None
|
711 |
+
all_self_attentions = () if output_attentions else None
|
712 |
+
all_cross_attentions = () if output_attentions else None
|
713 |
+
|
714 |
+
next_decoder_cache = () if use_cache else None
|
715 |
+
|
716 |
+
for i in range(self.config.num_hidden_layers):
|
717 |
+
layer_module = self.layer[i]
|
718 |
+
if output_hidden_states:
|
719 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
720 |
+
|
721 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
722 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
723 |
+
|
724 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
725 |
+
if use_cache:
|
726 |
+
logger.warning(
|
727 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
728 |
+
)
|
729 |
+
use_cache = False
|
730 |
+
layer_outputs = self._gradient_checkpointing_func(
|
731 |
+
layer_module.__call__,
|
732 |
+
hidden_states,
|
733 |
+
attention_mask,
|
734 |
+
layer_head_mask,
|
735 |
+
encoder_hidden_states,
|
736 |
+
encoder_attention_mask,
|
737 |
+
)
|
738 |
+
else:
|
739 |
+
layer_outputs = layer_module(
|
740 |
+
hidden_states,
|
741 |
+
attention_mask,
|
742 |
+
layer_head_mask,
|
743 |
+
encoder_hidden_states,
|
744 |
+
encoder_attention_mask,
|
745 |
+
past_key_value,
|
746 |
+
output_attentions,
|
747 |
+
query_length,
|
748 |
+
)
|
749 |
+
|
750 |
+
hidden_states = layer_outputs[0]
|
751 |
+
if use_cache:
|
752 |
+
next_decoder_cache += (layer_outputs[-1],)
|
753 |
+
if output_attentions:
|
754 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
755 |
+
if layer_module.has_cross_attention:
|
756 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
757 |
+
|
758 |
+
if output_hidden_states:
|
759 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
760 |
+
|
761 |
+
if not return_dict:
|
762 |
+
return tuple(
|
763 |
+
v
|
764 |
+
for v in [
|
765 |
+
hidden_states,
|
766 |
+
next_decoder_cache,
|
767 |
+
all_hidden_states,
|
768 |
+
all_self_attentions,
|
769 |
+
all_cross_attentions,
|
770 |
+
]
|
771 |
+
if v is not None
|
772 |
+
)
|
773 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
774 |
+
last_hidden_state=hidden_states,
|
775 |
+
past_key_values=next_decoder_cache,
|
776 |
+
hidden_states=all_hidden_states,
|
777 |
+
attentions=all_self_attentions,
|
778 |
+
cross_attentions=all_cross_attentions,
|
779 |
+
)
|
780 |
+
|
781 |
+
|
782 |
+
class CheXagentQFormerEmbeddings(nn.Module):
|
783 |
+
def __init__(self, config):
|
784 |
+
super().__init__()
|
785 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
786 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
787 |
+
|
788 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
789 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
790 |
+
|
791 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
792 |
+
self.register_buffer(
|
793 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
794 |
+
)
|
795 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
796 |
+
|
797 |
+
self.config = config
|
798 |
+
|
799 |
+
def forward(
|
800 |
+
self,
|
801 |
+
input_ids=None,
|
802 |
+
position_ids=None,
|
803 |
+
query_embeds=None,
|
804 |
+
past_key_values_length=0,
|
805 |
+
):
|
806 |
+
if input_ids is not None:
|
807 |
+
seq_length = input_ids.size()[1]
|
808 |
+
else:
|
809 |
+
seq_length = 0
|
810 |
+
|
811 |
+
if position_ids is None:
|
812 |
+
position_ids = self.position_ids[:, past_key_values_length: seq_length + past_key_values_length].clone()
|
813 |
+
|
814 |
+
if input_ids is not None:
|
815 |
+
embeddings = self.word_embeddings(input_ids)
|
816 |
+
if self.position_embedding_type == "absolute":
|
817 |
+
position_embeddings = self.position_embeddings(position_ids.to(embeddings.device))
|
818 |
+
embeddings = embeddings + position_embeddings
|
819 |
+
|
820 |
+
if query_embeds is not None:
|
821 |
+
embeddings = torch.cat((query_embeds, embeddings), dim=1)
|
822 |
+
else:
|
823 |
+
embeddings = query_embeds
|
824 |
+
|
825 |
+
embeddings = embeddings.to(self.layernorm.weight.dtype)
|
826 |
+
embeddings = self.layernorm(embeddings)
|
827 |
+
embeddings = self.dropout(embeddings)
|
828 |
+
return embeddings
|
829 |
+
|
830 |
+
|
831 |
+
class CheXagentQFormerEncoder(nn.Module):
|
832 |
+
def __init__(self, config):
|
833 |
+
super().__init__()
|
834 |
+
self.config = config
|
835 |
+
self.layer = nn.ModuleList(
|
836 |
+
[CheXagentQFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
837 |
+
)
|
838 |
+
self.gradient_checkpointing = False
|
839 |
+
|
840 |
+
def forward(
|
841 |
+
self,
|
842 |
+
hidden_states,
|
843 |
+
attention_mask=None,
|
844 |
+
head_mask=None,
|
845 |
+
encoder_hidden_states=None,
|
846 |
+
encoder_attention_mask=None,
|
847 |
+
past_key_values=None,
|
848 |
+
use_cache=None,
|
849 |
+
output_attentions=False,
|
850 |
+
output_hidden_states=False,
|
851 |
+
return_dict=True,
|
852 |
+
query_length=0,
|
853 |
+
):
|
854 |
+
all_hidden_states = () if output_hidden_states else None
|
855 |
+
all_self_attentions = () if output_attentions else None
|
856 |
+
all_cross_attentions = () if output_attentions else None
|
857 |
+
|
858 |
+
next_decoder_cache = () if use_cache else None
|
859 |
+
|
860 |
+
for i in range(self.config.num_hidden_layers):
|
861 |
+
layer_module = self.layer[i]
|
862 |
+
if output_hidden_states:
|
863 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
864 |
+
|
865 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
866 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
867 |
+
|
868 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
869 |
+
if use_cache:
|
870 |
+
logger.warning(
|
871 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
872 |
+
)
|
873 |
+
use_cache = False
|
874 |
+
layer_outputs = self._gradient_checkpointing_func(
|
875 |
+
layer_module.__call__,
|
876 |
+
hidden_states,
|
877 |
+
attention_mask,
|
878 |
+
layer_head_mask,
|
879 |
+
encoder_hidden_states,
|
880 |
+
encoder_attention_mask,
|
881 |
+
)
|
882 |
+
else:
|
883 |
+
layer_outputs = layer_module(
|
884 |
+
hidden_states,
|
885 |
+
attention_mask,
|
886 |
+
layer_head_mask,
|
887 |
+
encoder_hidden_states,
|
888 |
+
encoder_attention_mask,
|
889 |
+
past_key_value,
|
890 |
+
output_attentions,
|
891 |
+
query_length,
|
892 |
+
)
|
893 |
+
|
894 |
+
hidden_states = layer_outputs[0]
|
895 |
+
if use_cache:
|
896 |
+
next_decoder_cache += (layer_outputs[-1],)
|
897 |
+
if output_attentions:
|
898 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
899 |
+
if layer_module.has_cross_attention:
|
900 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
901 |
+
|
902 |
+
if output_hidden_states:
|
903 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
904 |
+
|
905 |
+
if not return_dict:
|
906 |
+
return tuple(
|
907 |
+
v
|
908 |
+
for v in [
|
909 |
+
hidden_states,
|
910 |
+
next_decoder_cache,
|
911 |
+
all_hidden_states,
|
912 |
+
all_self_attentions,
|
913 |
+
all_cross_attentions,
|
914 |
+
]
|
915 |
+
if v is not None
|
916 |
+
)
|
917 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
918 |
+
last_hidden_state=hidden_states,
|
919 |
+
past_key_values=next_decoder_cache,
|
920 |
+
hidden_states=all_hidden_states,
|
921 |
+
attentions=all_self_attentions,
|
922 |
+
cross_attentions=all_cross_attentions,
|
923 |
+
)
|
924 |
+
|
925 |
+
|
926 |
+
class CheXagentQFormerModel(CheXagentPreTrainedModel):
|
927 |
+
def __init__(self, config: CheXagentQFormerConfig):
|
928 |
+
super().__init__(config)
|
929 |
+
self.config = config
|
930 |
+
|
931 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
932 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
933 |
+
|
934 |
+
self.encoder = CheXagentQFormerEncoder(config)
|
935 |
+
|
936 |
+
self.post_init()
|
937 |
+
|
938 |
+
def get_input_embeddings(self):
|
939 |
+
return self.embeddings.word_embeddings
|
940 |
+
|
941 |
+
def set_input_embeddings(self, value):
|
942 |
+
self.embeddings.word_embeddings = value
|
943 |
+
|
944 |
+
def _prune_heads(self, heads_to_prune):
|
945 |
+
for layer, heads in heads_to_prune.items():
|
946 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
947 |
+
|
948 |
+
def get_extended_attention_mask(
|
949 |
+
self,
|
950 |
+
attention_mask: torch.Tensor,
|
951 |
+
input_shape: Tuple[int],
|
952 |
+
device: torch.device,
|
953 |
+
has_query: bool = False,
|
954 |
+
) -> torch.Tensor:
|
955 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
956 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
957 |
+
if attention_mask.dim() == 3:
|
958 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
959 |
+
elif attention_mask.dim() == 2:
|
960 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
961 |
+
# - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
962 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
963 |
+
else:
|
964 |
+
raise ValueError(
|
965 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
966 |
+
input_shape, attention_mask.shape
|
967 |
+
)
|
968 |
+
)
|
969 |
+
|
970 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
971 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
972 |
+
# positions we want to attend and -10000.0 for masked positions.
|
973 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
974 |
+
# effectively the same as removing these entirely.
|
975 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
976 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
977 |
+
return extended_attention_mask
|
978 |
+
|
979 |
+
def forward(
|
980 |
+
self,
|
981 |
+
query_embeds: torch.FloatTensor,
|
982 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
983 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
984 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
985 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
986 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
987 |
+
use_cache: Optional[bool] = None,
|
988 |
+
output_attentions: Optional[bool] = None,
|
989 |
+
output_hidden_states: Optional[bool] = None,
|
990 |
+
return_dict: Optional[bool] = None,
|
991 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
992 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
993 |
+
output_hidden_states = (
|
994 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
995 |
+
)
|
996 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
997 |
+
|
998 |
+
# past_key_values_length
|
999 |
+
past_key_values_length = (
|
1000 |
+
past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0
|
1001 |
+
)
|
1002 |
+
|
1003 |
+
query_length = query_embeds.shape[1] if query_embeds is not None else 0
|
1004 |
+
|
1005 |
+
embedding_output = self.layernorm(query_embeds)
|
1006 |
+
embedding_output = self.dropout(embedding_output)
|
1007 |
+
|
1008 |
+
input_shape = embedding_output.size()[:-1]
|
1009 |
+
batch_size, seq_length = input_shape
|
1010 |
+
device = embedding_output.device
|
1011 |
+
|
1012 |
+
if attention_mask is None:
|
1013 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
1014 |
+
|
1015 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1016 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1017 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
1018 |
+
|
1019 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1020 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1021 |
+
if encoder_hidden_states is not None:
|
1022 |
+
if type(encoder_hidden_states) == list:
|
1023 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
1024 |
+
else:
|
1025 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
1026 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1027 |
+
|
1028 |
+
if type(encoder_attention_mask) == list:
|
1029 |
+
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
1030 |
+
elif encoder_attention_mask is None:
|
1031 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
1032 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1033 |
+
else:
|
1034 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1035 |
+
else:
|
1036 |
+
encoder_extended_attention_mask = None
|
1037 |
+
|
1038 |
+
# Prepare head mask if needed
|
1039 |
+
# 1.0 in head_mask indicate we keep the head
|
1040 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1041 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1042 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1043 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1044 |
+
|
1045 |
+
encoder_outputs = self.encoder(
|
1046 |
+
embedding_output,
|
1047 |
+
attention_mask=extended_attention_mask,
|
1048 |
+
head_mask=head_mask,
|
1049 |
+
encoder_hidden_states=encoder_hidden_states,
|
1050 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1051 |
+
past_key_values=past_key_values,
|
1052 |
+
use_cache=use_cache,
|
1053 |
+
output_attentions=output_attentions,
|
1054 |
+
output_hidden_states=output_hidden_states,
|
1055 |
+
return_dict=return_dict,
|
1056 |
+
query_length=query_length,
|
1057 |
+
)
|
1058 |
+
sequence_output = encoder_outputs[0]
|
1059 |
+
pooled_output = sequence_output[:, 0, :]
|
1060 |
+
|
1061 |
+
if not return_dict:
|
1062 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1063 |
+
|
1064 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1065 |
+
last_hidden_state=sequence_output,
|
1066 |
+
pooler_output=pooled_output,
|
1067 |
+
past_key_values=encoder_outputs.past_key_values,
|
1068 |
+
hidden_states=encoder_outputs.hidden_states,
|
1069 |
+
attentions=encoder_outputs.attentions,
|
1070 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1071 |
+
)
|
1072 |
+
|
1073 |
+
|
1074 |
+
class CheXagentForConditionalGeneration(CheXagentPreTrainedModel):
|
1075 |
+
config_class = CheXagentConfig
|
1076 |
+
main_input_name = "pixel_values"
|
1077 |
+
|
1078 |
+
def __init__(self, config: CheXagentConfig):
|
1079 |
+
super().__init__(config)
|
1080 |
+
|
1081 |
+
self.vision_model = CheXagentVisionModel(config.vision_config)
|
1082 |
+
|
1083 |
+
self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size))
|
1084 |
+
self.qformer = CheXagentQFormerModel(config.qformer_config)
|
1085 |
+
|
1086 |
+
self.language_projection = nn.Linear(config.qformer_config.hidden_size, config.text_config.hidden_size)
|
1087 |
+
if config.use_decoder_only_language_model:
|
1088 |
+
language_model = AutoModelForCausalLM.from_config(config.text_config)
|
1089 |
+
else:
|
1090 |
+
language_model = AutoModelForSeq2SeqLM.from_config(config.text_config)
|
1091 |
+
|
1092 |
+
# Update _tied_weights_keys using the base model used.
|
1093 |
+
if language_model._tied_weights_keys is not None:
|
1094 |
+
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
|
1095 |
+
|
1096 |
+
self.language_model = language_model
|
1097 |
+
|
1098 |
+
# Initialize weights and apply final processing
|
1099 |
+
self.post_init()
|
1100 |
+
|
1101 |
+
def get_input_embeddings(self):
|
1102 |
+
return self.language_model.get_input_embeddings()
|
1103 |
+
|
1104 |
+
def set_input_embeddings(self, value):
|
1105 |
+
self.language_model.set_input_embeddings(value)
|
1106 |
+
|
1107 |
+
def set_output_embeddings(self, new_embeddings):
|
1108 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
1109 |
+
|
1110 |
+
def get_output_embeddings(self) -> nn.Module:
|
1111 |
+
return self.language_model.get_output_embeddings()
|
1112 |
+
|
1113 |
+
def get_encoder(self):
|
1114 |
+
return self.language_model.get_encoder()
|
1115 |
+
|
1116 |
+
def get_decoder(self):
|
1117 |
+
return self.language_model.get_decoder()
|
1118 |
+
|
1119 |
+
def _tie_weights(self):
|
1120 |
+
if not self.config.use_decoder_only_language_model:
|
1121 |
+
self.language_model.encoder.embed_tokens = self.language_model.shared
|
1122 |
+
self.language_model.decoder.embed_tokens = self.language_model.shared
|
1123 |
+
|
1124 |
+
def _preprocess_accelerate(self):
|
1125 |
+
hf_device_map = self.hf_device_map
|
1126 |
+
if len(hf_device_map) > 1 and "language_model" not in hf_device_map and torch.cuda.device_count() > 1:
|
1127 |
+
# warn users about unexpected behavior when using multi-GPU + BLIP-2 + `accelerate`.
|
1128 |
+
logger.warning(
|
1129 |
+
"The `language_model` is not in the `hf_device_map` dictionary and you are running your script"
|
1130 |
+
" in a multi-GPU environment. this may lead to unexpected behavior when using `accelerate`."
|
1131 |
+
" Please pass a `device_map` that contains `language_model` to remove this warning."
|
1132 |
+
" Please refer to https://github.com/huggingface/blog/blob/main/accelerate-large-models.md for"
|
1133 |
+
" more details on creating a `device_map` for large models.",
|
1134 |
+
)
|
1135 |
+
if hasattr(self.language_model, "_hf_hook"):
|
1136 |
+
self.language_model._hf_hook.io_same_device = True # For `generate` compatibility
|
1137 |
+
|
1138 |
+
def forward(
|
1139 |
+
self,
|
1140 |
+
pixel_values: torch.FloatTensor = None,
|
1141 |
+
input_ids: torch.FloatTensor = None,
|
1142 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1143 |
+
output_attentions: Optional[bool] = None,
|
1144 |
+
output_hidden_states: Optional[bool] = None,
|
1145 |
+
labels: Optional[torch.LongTensor] = None,
|
1146 |
+
return_dict: Optional[bool] = None,
|
1147 |
+
) -> Union[Tuple, CheXagentForConditionalGenerationModelOutput]:
|
1148 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1149 |
+
|
1150 |
+
vision_outputs, query_outputs = None, None
|
1151 |
+
if pixel_values is not None:
|
1152 |
+
# step 1: forward the images through the vision encoder,
|
1153 |
+
# to get image embeddings of shape (batch_size, seq_len, hidden_size)
|
1154 |
+
image_mask = pixel_values.sum(dim=(2, 3, 4)) != 0
|
1155 |
+
vision_outputs = self.vision_model(
|
1156 |
+
pixel_values=pixel_values[image_mask],
|
1157 |
+
output_attentions=output_attentions,
|
1158 |
+
output_hidden_states=output_hidden_states,
|
1159 |
+
return_dict=return_dict,
|
1160 |
+
)
|
1161 |
+
tmp = vision_outputs[0]
|
1162 |
+
image_embeds = tmp.new_zeros((*image_mask.shape, *tmp.shape[1:]))
|
1163 |
+
image_embeds[image_mask] = tmp
|
1164 |
+
|
1165 |
+
# step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
|
1166 |
+
image_attention_mask = torch.zeros(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
|
1167 |
+
image_attention_mask[image_mask] = 1
|
1168 |
+
|
1169 |
+
image_embeds = rearrange(image_embeds, "b i n d -> b (i n) d")
|
1170 |
+
image_attention_mask = rearrange(image_attention_mask, "b i n -> b (i n)")
|
1171 |
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
1172 |
+
query_outputs = self.qformer(
|
1173 |
+
query_embeds=query_tokens,
|
1174 |
+
encoder_hidden_states=image_embeds,
|
1175 |
+
encoder_attention_mask=image_attention_mask,
|
1176 |
+
output_attentions=output_attentions,
|
1177 |
+
output_hidden_states=output_hidden_states,
|
1178 |
+
return_dict=return_dict,
|
1179 |
+
)
|
1180 |
+
query_output = query_outputs[0]
|
1181 |
+
|
1182 |
+
# step 3: project vision to language
|
1183 |
+
input_vis = self.language_projection(query_output)
|
1184 |
+
vis_atts = torch.ones(input_vis.size()[:-1], dtype=torch.long, device=input_vis.device)
|
1185 |
+
|
1186 |
+
# step 4: get the embeddings of the prompt
|
1187 |
+
inputs_lang = self.language_model.get_input_embeddings()(input_ids)
|
1188 |
+
lang_atts = attention_mask
|
1189 |
+
if lang_atts is None:
|
1190 |
+
lang_atts = torch.ones_like(input_ids)
|
1191 |
+
|
1192 |
+
# step 5: conditioned on the images and/or prompts
|
1193 |
+
if pixel_values is not None:
|
1194 |
+
inputs_embeds = torch.cat([input_vis, inputs_lang], dim=1)
|
1195 |
+
attention_mask = torch.cat([vis_atts, lang_atts], dim=1)
|
1196 |
+
else:
|
1197 |
+
inputs_embeds = inputs_lang
|
1198 |
+
attention_mask = lang_atts
|
1199 |
+
|
1200 |
+
outputs = self.language_model(
|
1201 |
+
inputs_embeds=inputs_embeds,
|
1202 |
+
attention_mask=attention_mask,
|
1203 |
+
output_attentions=output_attentions,
|
1204 |
+
output_hidden_states=output_hidden_states,
|
1205 |
+
return_dict=return_dict
|
1206 |
+
)
|
1207 |
+
logits = outputs.logits if return_dict else outputs[0]
|
1208 |
+
|
1209 |
+
loss = None
|
1210 |
+
# we compute the loss here since we need to take into account the sequence length of the query embeds
|
1211 |
+
if labels is not None:
|
1212 |
+
# make target
|
1213 |
+
empty_labels = torch.ones(vis_atts.size(), dtype=torch.long, device=input_ids.device).fill_(-100)
|
1214 |
+
labels = torch.cat([empty_labels, labels], dim=1)
|
1215 |
+
labels = labels.to(logits.device)
|
1216 |
+
logits = logits[:, -labels.size(1):, :]
|
1217 |
+
# Shift so that tokens < n predict n
|
1218 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1219 |
+
shift_labels = labels[..., 1:].contiguous().to(logits.device)
|
1220 |
+
# Flatten the tokens
|
1221 |
+
loss_fct = CrossEntropyLoss(reduction="mean")
|
1222 |
+
loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1))
|
1223 |
+
|
1224 |
+
if not return_dict:
|
1225 |
+
output = (logits, vision_outputs, query_outputs, outputs)
|
1226 |
+
return ((loss,) + output) if loss is not None else output
|
1227 |
+
|
1228 |
+
return CheXagentForConditionalGenerationModelOutput(
|
1229 |
+
loss=loss,
|
1230 |
+
logits=logits,
|
1231 |
+
vision_outputs=vision_outputs,
|
1232 |
+
qformer_outputs=query_outputs,
|
1233 |
+
language_model_outputs=outputs,
|
1234 |
+
)
|
1235 |
+
|
1236 |
+
@torch.no_grad()
|
1237 |
+
def generate(
|
1238 |
+
self,
|
1239 |
+
pixel_values: torch.FloatTensor = None,
|
1240 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1241 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1242 |
+
**generate_kwargs,
|
1243 |
+
) -> torch.LongTensor:
|
1244 |
+
if hasattr(self, "hf_device_map"):
|
1245 |
+
# preprocess for `accelerate`
|
1246 |
+
self._preprocess_accelerate()
|
1247 |
+
|
1248 |
+
batch_size = pixel_values.shape[0] if pixel_values is not None else input_ids.shape[0]
|
1249 |
+
if pixel_values is not None:
|
1250 |
+
# step 1: forward the images through the vision encoder
|
1251 |
+
image_mask = pixel_values.sum(dim=(2, 3, 4)) != 0
|
1252 |
+
vision_outputs = self.vision_model(pixel_values[image_mask], return_dict=True)
|
1253 |
+
tmp = vision_outputs[0]
|
1254 |
+
image_embeds = tmp.new_zeros((*image_mask.shape, *tmp.shape[1:]))
|
1255 |
+
image_embeds[image_mask] = tmp
|
1256 |
+
|
1257 |
+
# step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
|
1258 |
+
image_attention_mask = torch.zeros(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
|
1259 |
+
image_attention_mask[image_mask] = 1
|
1260 |
+
image_embeds = rearrange(image_embeds, "b i n d -> b (i n) d")
|
1261 |
+
image_attention_mask = rearrange(image_attention_mask, "b i n -> b (i n)")
|
1262 |
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
1263 |
+
query_outputs = self.qformer(
|
1264 |
+
query_embeds=query_tokens,
|
1265 |
+
encoder_hidden_states=image_embeds,
|
1266 |
+
encoder_attention_mask=image_attention_mask,
|
1267 |
+
return_dict=True,
|
1268 |
+
)
|
1269 |
+
query_output = query_outputs.last_hidden_state
|
1270 |
+
|
1271 |
+
# step 3: project vision to language
|
1272 |
+
input_vis = self.language_projection(query_output)
|
1273 |
+
vis_atts = torch.ones(input_vis.size()[:-1], dtype=torch.long, device=input_vis.device)
|
1274 |
+
|
1275 |
+
# step 4: get the embeddings of the prompt
|
1276 |
+
if input_ids is None:
|
1277 |
+
input_ids = (
|
1278 |
+
torch.LongTensor([[self.config.text_config.bos_token_id]])
|
1279 |
+
.repeat(batch_size, 1)
|
1280 |
+
.to(next(self.parameters()).device)
|
1281 |
+
)
|
1282 |
+
inputs_lang = self.language_model.get_input_embeddings()(input_ids)
|
1283 |
+
lang_atts = attention_mask
|
1284 |
+
if lang_atts is None:
|
1285 |
+
lang_atts = torch.ones_like(input_ids)
|
1286 |
+
|
1287 |
+
# step 5: conditioned on the images and/or prompts
|
1288 |
+
if pixel_values is not None:
|
1289 |
+
inputs_embeds = torch.cat([input_vis, inputs_lang], dim=1)
|
1290 |
+
attention_mask = torch.cat([vis_atts, lang_atts], dim=1)
|
1291 |
+
else:
|
1292 |
+
inputs_embeds = inputs_lang
|
1293 |
+
attention_mask = lang_atts
|
1294 |
+
|
1295 |
+
outputs = self.language_model.generate(
|
1296 |
+
inputs_embeds=inputs_embeds,
|
1297 |
+
attention_mask=attention_mask,
|
1298 |
+
**generate_kwargs,
|
1299 |
+
)
|
1300 |
+
return outputs
|
processing_chexagent.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The CheXagent Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import List, Optional, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from transformers.image_utils import ImageInput
|
20 |
+
from transformers.processing_utils import ProcessorMixin
|
21 |
+
from transformers.tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput
|
22 |
+
from transformers.tokenization_utils_base import TruncationStrategy
|
23 |
+
from transformers.utils import TensorType
|
24 |
+
|
25 |
+
|
26 |
+
class CheXagentProcessor(ProcessorMixin):
|
27 |
+
attributes = ["image_processor", "tokenizer"]
|
28 |
+
image_processor_class = "BlipImageProcessor"
|
29 |
+
tokenizer_class = "AutoTokenizer"
|
30 |
+
|
31 |
+
def __init__(self, image_processor, tokenizer):
|
32 |
+
tokenizer.return_token_type_ids = False
|
33 |
+
super().__init__(image_processor, tokenizer)
|
34 |
+
self.current_processor = self.image_processor
|
35 |
+
|
36 |
+
def __call__(
|
37 |
+
self,
|
38 |
+
images: ImageInput = None,
|
39 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
40 |
+
add_special_tokens: bool = True,
|
41 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
42 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
43 |
+
max_length: Optional[int] = None,
|
44 |
+
stride: int = 0,
|
45 |
+
pad_to_multiple_of: Optional[int] = None,
|
46 |
+
return_attention_mask: Optional[bool] = None,
|
47 |
+
return_overflowing_tokens: bool = False,
|
48 |
+
return_special_tokens_mask: bool = False,
|
49 |
+
return_offsets_mapping: bool = False,
|
50 |
+
return_token_type_ids: bool = False,
|
51 |
+
return_length: bool = False,
|
52 |
+
verbose: bool = True,
|
53 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
54 |
+
**kwargs,
|
55 |
+
) -> BatchEncoding:
|
56 |
+
if images is None and text is None:
|
57 |
+
raise ValueError("You have to specify either images or text.")
|
58 |
+
|
59 |
+
# Get only text
|
60 |
+
if images is None:
|
61 |
+
self.current_processor = self.tokenizer
|
62 |
+
text_encoding = self.tokenizer(
|
63 |
+
text=text,
|
64 |
+
add_special_tokens=add_special_tokens,
|
65 |
+
padding=padding,
|
66 |
+
truncation=truncation,
|
67 |
+
max_length=max_length,
|
68 |
+
stride=stride,
|
69 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
70 |
+
return_attention_mask=return_attention_mask,
|
71 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
72 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
73 |
+
return_offsets_mapping=return_offsets_mapping,
|
74 |
+
return_token_type_ids=return_token_type_ids,
|
75 |
+
return_length=return_length,
|
76 |
+
verbose=verbose,
|
77 |
+
return_tensors=return_tensors,
|
78 |
+
**kwargs,
|
79 |
+
)
|
80 |
+
return text_encoding
|
81 |
+
|
82 |
+
# add pixel_values
|
83 |
+
if images is not None:
|
84 |
+
encoding_image_processor = self.image_processor(images, return_tensors=return_tensors)
|
85 |
+
encoding_image_processor["pixel_values"] = torch.stack(
|
86 |
+
[torch.tensor(pixel_values) for pixel_values in encoding_image_processor["pixel_values"]]
|
87 |
+
).unsqueeze(0)
|
88 |
+
|
89 |
+
if text is not None:
|
90 |
+
text_encoding = self.tokenizer(
|
91 |
+
text=text,
|
92 |
+
add_special_tokens=add_special_tokens,
|
93 |
+
padding=padding,
|
94 |
+
truncation=truncation,
|
95 |
+
max_length=max_length,
|
96 |
+
stride=stride,
|
97 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
98 |
+
return_attention_mask=return_attention_mask,
|
99 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
100 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
101 |
+
return_offsets_mapping=return_offsets_mapping,
|
102 |
+
return_token_type_ids=return_token_type_ids,
|
103 |
+
return_length=return_length,
|
104 |
+
verbose=verbose,
|
105 |
+
return_tensors=return_tensors,
|
106 |
+
**kwargs,
|
107 |
+
)
|
108 |
+
else:
|
109 |
+
text_encoding = None
|
110 |
+
|
111 |
+
if text_encoding is not None:
|
112 |
+
encoding_image_processor.update(text_encoding)
|
113 |
+
|
114 |
+
return encoding_image_processor
|
115 |
+
|
116 |
+
def batch_decode(self, *args, **kwargs):
|
117 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
118 |
+
|
119 |
+
def decode(self, *args, **kwargs):
|
120 |
+
return self.tokenizer.decode(*args, **kwargs)
|
121 |
+
|
122 |
+
@property
|
123 |
+
def model_input_names(self):
|
124 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
125 |
+
image_processor_input_names = self.image_processor.model_input_names
|
126 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|