init
Browse files- llava_internlm2_chat_1_8b_clip_vit_large_p14_336_e1_gpu1_pretrain.py +214 -0
- llava_internlm2_chat_1_8b_clip_vit_large_p14_336_e1_gpu4_finetune.py +230 -0
- lora_and_projector/llm_adapter/README.md +204 -0
- lora_and_projector/llm_adapter/adapter_config.json +31 -0
- lora_and_projector/llm_adapter/adapter_model.safetensors +3 -0
- lora_and_projector/projector/config.json +17 -0
- lora_and_projector/projector/configuration_projector.py +23 -0
- lora_and_projector/projector/model.safetensors +3 -0
- lora_and_projector/projector/modeling_projector.py +51 -0
- lora_and_projector/visual_encoder_adapter/README.md +204 -0
- lora_and_projector/visual_encoder_adapter/adapter_config.json +34 -0
- lora_and_projector/visual_encoder_adapter/adapter_model.safetensors +3 -0
- lora_and_projector/xtuner_config.py +222 -0
- mmbench_results/ccbench/args.json +19 -0
- mmbench_results/ccbench/mmbench_result.json +10 -0
- mmbench_results/ccbench/mmbench_result.xlsx +0 -0
- mmbench_results/dev_cn/args.json +19 -0
- mmbench_results/dev_cn/mmbench_result.json +9 -0
- mmbench_results/dev_cn/mmbench_result.xlsx +0 -0
- mmbench_results/dev_en/args.json +19 -0
- mmbench_results/dev_en/mmbench_result.json +9 -0
- mmbench_results/dev_en/mmbench_result.xlsx +0 -0
- mmbench_results/test_cn/args.json +19 -0
- mmbench_results/test_cn/mmbench_result.xlsx +0 -0
- mmbench_results/test_en/args.json +19 -0
- mmbench_results/test_en/mmbench_result.xlsx +0 -0
llava_internlm2_chat_1_8b_clip_vit_large_p14_336_e1_gpu1_pretrain.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from mmengine.dataset import DefaultSampler
|
4 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
5 |
+
LoggerHook, ParamSchedulerHook)
|
6 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
7 |
+
from torch.optim import AdamW
|
8 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
9 |
+
BitsAndBytesConfig, CLIPImageProcessor,
|
10 |
+
CLIPVisionModel)
|
11 |
+
|
12 |
+
from xtuner.dataset import LLaVADataset
|
13 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
14 |
+
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory
|
15 |
+
from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook
|
16 |
+
from xtuner.engine.runner import TrainLoop
|
17 |
+
from xtuner.model import LLaVAModel
|
18 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
19 |
+
|
20 |
+
#######################################################################
|
21 |
+
# PART 1 Settings #
|
22 |
+
#######################################################################
|
23 |
+
# Model
|
24 |
+
llm_name_or_path = 'internlm/internlm2-chat-1_8b'
|
25 |
+
visual_encoder_name_or_path = 'openai/clip-vit-large-patch14-336'
|
26 |
+
|
27 |
+
# Data
|
28 |
+
data_root = './data/llava_data/'
|
29 |
+
data_path = data_root + 'LLaVA-Pretrain/blip_laion_cc_sbu_558k.json'
|
30 |
+
image_folder = data_root + 'LLaVA-Pretrain/images'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.internlm2_chat
|
32 |
+
max_length = int(2048 - (336 / 14)**2)
|
33 |
+
|
34 |
+
# Scheduler & Optimizer
|
35 |
+
batch_size = 40 # per_device
|
36 |
+
accumulative_counts = 7
|
37 |
+
dataloader_num_workers = 2
|
38 |
+
max_epochs = 1
|
39 |
+
optim_type = AdamW
|
40 |
+
lr = 1e-3
|
41 |
+
betas = (0.9, 0.999)
|
42 |
+
weight_decay = 0
|
43 |
+
max_norm = 1 # grad clip
|
44 |
+
warmup_ratio = 0.03
|
45 |
+
|
46 |
+
# Save
|
47 |
+
save_steps = 500
|
48 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
49 |
+
|
50 |
+
# Evaluate the generation performance during the training
|
51 |
+
evaluation_freq = 500
|
52 |
+
SYSTEM = ''
|
53 |
+
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg'
|
54 |
+
evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture']
|
55 |
+
|
56 |
+
#######################################################################
|
57 |
+
# PART 2 Model & Tokenizer & Image Processor #
|
58 |
+
#######################################################################
|
59 |
+
tokenizer = dict(
|
60 |
+
type=AutoTokenizer.from_pretrained,
|
61 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
62 |
+
trust_remote_code=True,
|
63 |
+
padding_side='right')
|
64 |
+
|
65 |
+
image_processor = dict(
|
66 |
+
type=CLIPImageProcessor.from_pretrained,
|
67 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path,
|
68 |
+
trust_remote_code=True)
|
69 |
+
|
70 |
+
model = dict(
|
71 |
+
type=LLaVAModel,
|
72 |
+
freeze_llm=True,
|
73 |
+
freeze_visual_encoder=True,
|
74 |
+
llm=dict(
|
75 |
+
type=AutoModelForCausalLM.from_pretrained,
|
76 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
77 |
+
trust_remote_code=True,
|
78 |
+
torch_dtype=torch.float16,
|
79 |
+
quantization_config=dict(
|
80 |
+
type=BitsAndBytesConfig,
|
81 |
+
load_in_4bit=True,
|
82 |
+
load_in_8bit=False,
|
83 |
+
llm_int8_threshold=6.0,
|
84 |
+
llm_int8_has_fp16_weight=False,
|
85 |
+
bnb_4bit_compute_dtype=torch.float16,
|
86 |
+
bnb_4bit_use_double_quant=True,
|
87 |
+
bnb_4bit_quant_type='nf4')),
|
88 |
+
visual_encoder=dict(
|
89 |
+
type=CLIPVisionModel.from_pretrained,
|
90 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
llava_dataset = dict(
|
96 |
+
type=LLaVADataset,
|
97 |
+
data_path=data_path,
|
98 |
+
image_folder=image_folder,
|
99 |
+
tokenizer=tokenizer,
|
100 |
+
image_processor=image_processor,
|
101 |
+
dataset_map_fn=llava_map_fn,
|
102 |
+
template_map_fn=dict(
|
103 |
+
type=template_map_fn_factory, template=prompt_template),
|
104 |
+
max_length=max_length,
|
105 |
+
pad_image_to_square=False)
|
106 |
+
|
107 |
+
train_dataloader = dict(
|
108 |
+
batch_size=batch_size,
|
109 |
+
num_workers=dataloader_num_workers,
|
110 |
+
dataset=llava_dataset,
|
111 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
112 |
+
collate_fn=dict(type=default_collate_fn))
|
113 |
+
|
114 |
+
#######################################################################
|
115 |
+
# PART 4 Scheduler & Optimizer #
|
116 |
+
#######################################################################
|
117 |
+
# optimizer
|
118 |
+
optim_wrapper = dict(
|
119 |
+
type=AmpOptimWrapper,
|
120 |
+
optimizer=dict(
|
121 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
122 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
123 |
+
accumulative_counts=accumulative_counts,
|
124 |
+
loss_scale='dynamic',
|
125 |
+
dtype='float16')
|
126 |
+
|
127 |
+
# learning policy
|
128 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
129 |
+
param_scheduler = [
|
130 |
+
dict(
|
131 |
+
type=LinearLR,
|
132 |
+
start_factor=1e-5,
|
133 |
+
by_epoch=True,
|
134 |
+
begin=0,
|
135 |
+
end=warmup_ratio * max_epochs,
|
136 |
+
convert_to_iter_based=True),
|
137 |
+
dict(
|
138 |
+
type=CosineAnnealingLR,
|
139 |
+
eta_min=0.0,
|
140 |
+
by_epoch=True,
|
141 |
+
begin=warmup_ratio * max_epochs,
|
142 |
+
end=max_epochs,
|
143 |
+
convert_to_iter_based=True)
|
144 |
+
]
|
145 |
+
|
146 |
+
# train, val, test setting
|
147 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
148 |
+
|
149 |
+
#######################################################################
|
150 |
+
# PART 5 Runtime #
|
151 |
+
#######################################################################
|
152 |
+
# Log the dialogue periodically during the training process, optional
|
153 |
+
custom_hooks = [
|
154 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
155 |
+
dict(
|
156 |
+
type=EvaluateChatHook,
|
157 |
+
tokenizer=tokenizer,
|
158 |
+
image_processor=image_processor,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
evaluation_images=evaluation_images,
|
162 |
+
system=SYSTEM,
|
163 |
+
prompt_template=prompt_template)
|
164 |
+
]
|
165 |
+
|
166 |
+
# configure default hooks
|
167 |
+
default_hooks = dict(
|
168 |
+
# record the time of every iteration.
|
169 |
+
timer=dict(type=IterTimerHook),
|
170 |
+
# print log every 10 iterations.
|
171 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
172 |
+
# enable the parameter scheduler.
|
173 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
174 |
+
# save checkpoint per `save_steps`.
|
175 |
+
checkpoint=dict(
|
176 |
+
type=CheckpointHook,
|
177 |
+
by_epoch=False,
|
178 |
+
interval=save_steps,
|
179 |
+
max_keep_ckpts=save_total_limit),
|
180 |
+
# set sampler seed in distributed evrionment.
|
181 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
182 |
+
)
|
183 |
+
|
184 |
+
# configure environment
|
185 |
+
env_cfg = dict(
|
186 |
+
# whether to enable cudnn benchmark
|
187 |
+
cudnn_benchmark=False,
|
188 |
+
# set multi process parameters
|
189 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
190 |
+
# set distributed parameters
|
191 |
+
dist_cfg=dict(backend='nccl'),
|
192 |
+
)
|
193 |
+
|
194 |
+
# set visualizer
|
195 |
+
from mmengine.visualization import Visualizer, TensorboardVisBackend
|
196 |
+
visualizer = dict(
|
197 |
+
type=Visualizer,
|
198 |
+
vis_backends=[dict(type=TensorboardVisBackend)]
|
199 |
+
)
|
200 |
+
|
201 |
+
# set log level
|
202 |
+
log_level = 'INFO'
|
203 |
+
|
204 |
+
# load from which checkpoint
|
205 |
+
load_from = None
|
206 |
+
|
207 |
+
# whether to resume training from the loaded checkpoint
|
208 |
+
resume = False
|
209 |
+
|
210 |
+
# Defaults to use random seed and disable `deterministic`
|
211 |
+
randomness = dict(seed=None, deterministic=False)
|
212 |
+
|
213 |
+
# set log processor
|
214 |
+
log_processor = dict(by_epoch=False)
|
llava_internlm2_chat_1_8b_clip_vit_large_p14_336_e1_gpu4_finetune.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
4 |
+
LoggerHook, ParamSchedulerHook)
|
5 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
6 |
+
from peft import LoraConfig
|
7 |
+
from torch.optim import AdamW
|
8 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
9 |
+
BitsAndBytesConfig, CLIPImageProcessor,
|
10 |
+
CLIPVisionModel)
|
11 |
+
|
12 |
+
from xtuner.dataset import LLaVADataset
|
13 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
14 |
+
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory
|
15 |
+
from xtuner.dataset.samplers import LengthGroupedSampler
|
16 |
+
from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook
|
17 |
+
from xtuner.engine.runner import TrainLoop
|
18 |
+
from xtuner.model import LLaVAModel
|
19 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
20 |
+
|
21 |
+
#######################################################################
|
22 |
+
# PART 1 Settings #
|
23 |
+
#######################################################################
|
24 |
+
# Model
|
25 |
+
llm_name_or_path = 'internlm/internlm2-chat-1_8b'
|
26 |
+
visual_encoder_name_or_path = 'openai/clip-vit-large-patch14-336'
|
27 |
+
# Specify the pretrained pth
|
28 |
+
pretrained_pth = './work_dirs/llava_internlm2_chat_1_8b_clip_vit_large_p14_336_e1_gpu1_pretrain/iter_13954.pth'
|
29 |
+
|
30 |
+
# Data
|
31 |
+
data_root = './data/llava_data/'
|
32 |
+
data_path = data_root + 'LLaVA-Instruct-150K/llava_v1_5_mix665k.json'
|
33 |
+
image_folder = data_root + 'llava_images'
|
34 |
+
prompt_template = PROMPT_TEMPLATE.internlm2_chat
|
35 |
+
max_length = int(2048 - (336 / 14)**2)
|
36 |
+
|
37 |
+
# Scheduler & Optimizer
|
38 |
+
batch_size = 12 # per_device
|
39 |
+
accumulative_counts = 3
|
40 |
+
dataloader_num_workers = 4
|
41 |
+
max_epochs = 1
|
42 |
+
optim_type = AdamW
|
43 |
+
lr = 2e-4
|
44 |
+
betas = (0.9, 0.999)
|
45 |
+
weight_decay = 0
|
46 |
+
max_norm = 1 # grad clip
|
47 |
+
warmup_ratio = 0.03
|
48 |
+
|
49 |
+
# Save
|
50 |
+
save_steps = 500
|
51 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
52 |
+
|
53 |
+
# Evaluate the generation performance during the training
|
54 |
+
evaluation_freq = 500
|
55 |
+
SYSTEM = ''
|
56 |
+
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg'
|
57 |
+
evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture']
|
58 |
+
|
59 |
+
#######################################################################
|
60 |
+
# PART 2 Model & Tokenizer & Image Processor #
|
61 |
+
#######################################################################
|
62 |
+
tokenizer = dict(
|
63 |
+
type=AutoTokenizer.from_pretrained,
|
64 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
65 |
+
trust_remote_code=True,
|
66 |
+
padding_side='right')
|
67 |
+
|
68 |
+
image_processor = dict(
|
69 |
+
type=CLIPImageProcessor.from_pretrained,
|
70 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path,
|
71 |
+
trust_remote_code=True)
|
72 |
+
|
73 |
+
model = dict(
|
74 |
+
type=LLaVAModel,
|
75 |
+
freeze_llm=True,
|
76 |
+
freeze_visual_encoder=True,
|
77 |
+
pretrained_pth=pretrained_pth,
|
78 |
+
llm=dict(
|
79 |
+
type=AutoModelForCausalLM.from_pretrained,
|
80 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
81 |
+
trust_remote_code=True,
|
82 |
+
torch_dtype=torch.float16,
|
83 |
+
quantization_config=dict(
|
84 |
+
type=BitsAndBytesConfig,
|
85 |
+
load_in_4bit=True,
|
86 |
+
load_in_8bit=False,
|
87 |
+
llm_int8_threshold=6.0,
|
88 |
+
llm_int8_has_fp16_weight=False,
|
89 |
+
bnb_4bit_compute_dtype=torch.float16,
|
90 |
+
bnb_4bit_use_double_quant=True,
|
91 |
+
bnb_4bit_quant_type='nf4')),
|
92 |
+
llm_lora=dict(
|
93 |
+
type=LoraConfig,
|
94 |
+
r=512,
|
95 |
+
lora_alpha=256,
|
96 |
+
lora_dropout=0.05,
|
97 |
+
bias='none',
|
98 |
+
task_type='CAUSAL_LM'),
|
99 |
+
visual_encoder=dict(
|
100 |
+
type=CLIPVisionModel.from_pretrained,
|
101 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path),
|
102 |
+
visual_encoder_lora=dict(
|
103 |
+
type=LoraConfig, r=64, lora_alpha=16, lora_dropout=0.05, bias='none'))
|
104 |
+
|
105 |
+
#######################################################################
|
106 |
+
# PART 3 Dataset & Dataloader #
|
107 |
+
#######################################################################
|
108 |
+
llava_dataset = dict(
|
109 |
+
type=LLaVADataset,
|
110 |
+
data_path=data_path,
|
111 |
+
image_folder=image_folder,
|
112 |
+
tokenizer=tokenizer,
|
113 |
+
image_processor=image_processor,
|
114 |
+
dataset_map_fn=llava_map_fn,
|
115 |
+
template_map_fn=dict(
|
116 |
+
type=template_map_fn_factory, template=prompt_template),
|
117 |
+
max_length=max_length,
|
118 |
+
pad_image_to_square=True)
|
119 |
+
|
120 |
+
train_dataloader = dict(
|
121 |
+
batch_size=batch_size,
|
122 |
+
num_workers=dataloader_num_workers,
|
123 |
+
dataset=llava_dataset,
|
124 |
+
sampler=dict(
|
125 |
+
type=LengthGroupedSampler,
|
126 |
+
length_property='modality_length',
|
127 |
+
per_device_batch_size=batch_size * accumulative_counts),
|
128 |
+
collate_fn=dict(type=default_collate_fn))
|
129 |
+
|
130 |
+
#######################################################################
|
131 |
+
# PART 4 Scheduler & Optimizer #
|
132 |
+
#######################################################################
|
133 |
+
# optimizer
|
134 |
+
optim_wrapper = dict(
|
135 |
+
type=AmpOptimWrapper,
|
136 |
+
optimizer=dict(
|
137 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
138 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
139 |
+
accumulative_counts=accumulative_counts,
|
140 |
+
loss_scale='dynamic',
|
141 |
+
dtype='float16')
|
142 |
+
|
143 |
+
# learning policy
|
144 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
145 |
+
param_scheduler = [
|
146 |
+
dict(
|
147 |
+
type=LinearLR,
|
148 |
+
start_factor=1e-5,
|
149 |
+
by_epoch=True,
|
150 |
+
begin=0,
|
151 |
+
end=warmup_ratio * max_epochs,
|
152 |
+
convert_to_iter_based=True),
|
153 |
+
dict(
|
154 |
+
type=CosineAnnealingLR,
|
155 |
+
eta_min=0.0,
|
156 |
+
by_epoch=True,
|
157 |
+
begin=warmup_ratio * max_epochs,
|
158 |
+
end=max_epochs,
|
159 |
+
convert_to_iter_based=True)
|
160 |
+
]
|
161 |
+
|
162 |
+
# train, val, test setting
|
163 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
164 |
+
|
165 |
+
#######################################################################
|
166 |
+
# PART 5 Runtime #
|
167 |
+
#######################################################################
|
168 |
+
# Log the dialogue periodically during the training process, optional
|
169 |
+
custom_hooks = [
|
170 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
171 |
+
dict(
|
172 |
+
type=EvaluateChatHook,
|
173 |
+
tokenizer=tokenizer,
|
174 |
+
image_processor=image_processor,
|
175 |
+
every_n_iters=evaluation_freq,
|
176 |
+
evaluation_inputs=evaluation_inputs,
|
177 |
+
evaluation_images=evaluation_images,
|
178 |
+
system=SYSTEM,
|
179 |
+
prompt_template=prompt_template)
|
180 |
+
]
|
181 |
+
|
182 |
+
# configure default hooks
|
183 |
+
default_hooks = dict(
|
184 |
+
# record the time of every iteration.
|
185 |
+
timer=dict(type=IterTimerHook),
|
186 |
+
# print log every 10 iterations.
|
187 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
188 |
+
# enable the parameter scheduler.
|
189 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
190 |
+
# save checkpoint per `save_steps`.
|
191 |
+
checkpoint=dict(
|
192 |
+
type=CheckpointHook,
|
193 |
+
by_epoch=False,
|
194 |
+
interval=save_steps,
|
195 |
+
max_keep_ckpts=save_total_limit),
|
196 |
+
# set sampler seed in distributed evrionment.
|
197 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
198 |
+
)
|
199 |
+
|
200 |
+
# configure environment
|
201 |
+
env_cfg = dict(
|
202 |
+
# whether to enable cudnn benchmark
|
203 |
+
cudnn_benchmark=False,
|
204 |
+
# set multi process parameters
|
205 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
206 |
+
# set distributed parameters
|
207 |
+
dist_cfg=dict(backend='nccl'),
|
208 |
+
)
|
209 |
+
|
210 |
+
# set visualizer
|
211 |
+
from mmengine.visualization import Visualizer, TensorboardVisBackend
|
212 |
+
visualizer = dict(
|
213 |
+
type=Visualizer,
|
214 |
+
vis_backends=[dict(type=TensorboardVisBackend)]
|
215 |
+
)
|
216 |
+
|
217 |
+
# set log level
|
218 |
+
log_level = 'INFO'
|
219 |
+
|
220 |
+
# load from which checkpoint
|
221 |
+
load_from = None
|
222 |
+
|
223 |
+
# whether to resume training from the loaded checkpoint
|
224 |
+
resume = False
|
225 |
+
|
226 |
+
# Defaults to use random seed and disable `deterministic`
|
227 |
+
randomness = dict(seed=None, deterministic=False)
|
228 |
+
|
229 |
+
# set log processor
|
230 |
+
log_processor = dict(by_epoch=False)
|
lora_and_projector/llm_adapter/README.md
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: internlm/internlm2-chat-1_8b
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
### Framework versions
|
203 |
+
|
204 |
+
- PEFT 0.8.2
|
lora_and_projector/llm_adapter/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "internlm/internlm2-chat-1_8b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 256,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 512,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"wqkv",
|
23 |
+
"w2",
|
24 |
+
"w1",
|
25 |
+
"w3",
|
26 |
+
"output",
|
27 |
+
"wo"
|
28 |
+
],
|
29 |
+
"task_type": "CAUSAL_LM",
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
lora_and_projector/llm_adapter/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbce6e30f0326fbb9507ace17588955706e386b217b72bd69bd3f29779626fdc
|
3 |
+
size 1103527968
|
lora_and_projector/projector/config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ProjectorModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_projector.ProjectorConfig",
|
7 |
+
"AutoModel": "modeling_projector.ProjectorModel"
|
8 |
+
},
|
9 |
+
"bias": true,
|
10 |
+
"depth": 2,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"llm_hidden_size": 2048,
|
13 |
+
"model_type": "projector",
|
14 |
+
"torch_dtype": "float32",
|
15 |
+
"transformers_version": "4.37.2",
|
16 |
+
"visual_hidden_size": 1024
|
17 |
+
}
|
lora_and_projector/projector/configuration_projector.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class ProjectorConfig(PretrainedConfig):
|
6 |
+
model_type = 'projector'
|
7 |
+
_auto_class = 'AutoConfig'
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
visual_hidden_size=4096,
|
12 |
+
llm_hidden_size=4096,
|
13 |
+
depth=2,
|
14 |
+
hidden_act='gelu',
|
15 |
+
bias=True,
|
16 |
+
**kwargs,
|
17 |
+
):
|
18 |
+
self.visual_hidden_size = visual_hidden_size
|
19 |
+
self.llm_hidden_size = llm_hidden_size
|
20 |
+
self.depth = depth
|
21 |
+
self.hidden_act = hidden_act
|
22 |
+
self.bias = bias
|
23 |
+
super().__init__(**kwargs)
|
lora_and_projector/projector/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a6d0cd3071ecbe20435bcdb604b41cd16ba6b00146bc73083966b8478601b5e
|
3 |
+
size 25182568
|
lora_and_projector/projector/modeling_projector.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from transformers import PreTrainedModel
|
5 |
+
from transformers.activations import ACT2FN
|
6 |
+
|
7 |
+
from .configuration_projector import ProjectorConfig
|
8 |
+
|
9 |
+
|
10 |
+
class ProjectorModel(PreTrainedModel):
|
11 |
+
_auto_class = 'AutoModel'
|
12 |
+
config_class = ProjectorConfig
|
13 |
+
base_model_prefix = 'model'
|
14 |
+
supports_gradient_checkpointing = True
|
15 |
+
|
16 |
+
def __init__(self, config: ProjectorConfig) -> None:
|
17 |
+
super().__init__(config)
|
18 |
+
self.gradient_checkpointing = False
|
19 |
+
|
20 |
+
modules = [
|
21 |
+
nn.Linear(
|
22 |
+
config.visual_hidden_size,
|
23 |
+
config.llm_hidden_size,
|
24 |
+
bias=config.bias)
|
25 |
+
]
|
26 |
+
for _ in range(1, config.depth):
|
27 |
+
modules.append(ACT2FN[config.hidden_act])
|
28 |
+
modules.append(
|
29 |
+
nn.Linear(
|
30 |
+
config.llm_hidden_size,
|
31 |
+
config.llm_hidden_size,
|
32 |
+
bias=config.bias))
|
33 |
+
self.model = nn.Sequential(*modules)
|
34 |
+
|
35 |
+
def enable_input_require_grads(self):
|
36 |
+
|
37 |
+
def make_inputs_require_grad(module, input, output):
|
38 |
+
output.requires_grad_(True)
|
39 |
+
|
40 |
+
self.model.register_forward_hook(make_inputs_require_grad)
|
41 |
+
|
42 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
43 |
+
if isinstance(module, ProjectorModel):
|
44 |
+
module.gradient_checkpointing = value
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
if self.gradient_checkpointing and self.training:
|
48 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(self.model, x)
|
49 |
+
else:
|
50 |
+
layer_outputs = self.model(x)
|
51 |
+
return layer_outputs
|
lora_and_projector/visual_encoder_adapter/README.md
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: openai/clip-vit-large-patch14-336
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
### Framework versions
|
203 |
+
|
204 |
+
- PEFT 0.8.2
|
lora_and_projector/visual_encoder_adapter/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": {
|
4 |
+
"base_model_class": "CLIPVisionModel",
|
5 |
+
"parent_library": "transformers.models.clip.modeling_clip"
|
6 |
+
},
|
7 |
+
"base_model_name_or_path": "openai/clip-vit-large-patch14-336",
|
8 |
+
"bias": "none",
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 16,
|
16 |
+
"lora_dropout": 0.05,
|
17 |
+
"megatron_config": null,
|
18 |
+
"megatron_core": "megatron.core",
|
19 |
+
"modules_to_save": null,
|
20 |
+
"peft_type": "LORA",
|
21 |
+
"r": 64,
|
22 |
+
"rank_pattern": {},
|
23 |
+
"revision": null,
|
24 |
+
"target_modules": [
|
25 |
+
"out_proj",
|
26 |
+
"q_proj",
|
27 |
+
"v_proj",
|
28 |
+
"k_proj",
|
29 |
+
"fc1",
|
30 |
+
"fc2"
|
31 |
+
],
|
32 |
+
"task_type": null,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
lora_and_projector/visual_encoder_adapter/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a94696a6aa39226ecb69b31aaf14f33264c9d716056485e4a92a4d9880aa53ca
|
3 |
+
size 113288576
|
lora_and_projector/xtuner_config.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SYSTEM = ''
|
2 |
+
accumulative_counts = 3
|
3 |
+
batch_size = 12
|
4 |
+
betas = (
|
5 |
+
0.9,
|
6 |
+
0.999,
|
7 |
+
)
|
8 |
+
custom_hooks = [
|
9 |
+
dict(
|
10 |
+
tokenizer=dict(
|
11 |
+
padding_side='right',
|
12 |
+
pretrained_model_name_or_path='internlm/internlm2-chat-1_8b',
|
13 |
+
trust_remote_code=True,
|
14 |
+
type='transformers.AutoTokenizer.from_pretrained'),
|
15 |
+
type='xtuner.engine.hooks.DatasetInfoHook'),
|
16 |
+
dict(
|
17 |
+
evaluation_images='https://llava-vl.github.io/static/images/view.jpg',
|
18 |
+
evaluation_inputs=[
|
19 |
+
'请描述一下这张照片',
|
20 |
+
'Please describe this picture',
|
21 |
+
],
|
22 |
+
every_n_iters=500,
|
23 |
+
image_processor=dict(
|
24 |
+
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
|
25 |
+
trust_remote_code=True,
|
26 |
+
type='transformers.CLIPImageProcessor.from_pretrained'),
|
27 |
+
prompt_template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
28 |
+
system='',
|
29 |
+
tokenizer=dict(
|
30 |
+
padding_side='right',
|
31 |
+
pretrained_model_name_or_path='internlm/internlm2-chat-1_8b',
|
32 |
+
trust_remote_code=True,
|
33 |
+
type='transformers.AutoTokenizer.from_pretrained'),
|
34 |
+
type='xtuner.engine.hooks.EvaluateChatHook'),
|
35 |
+
]
|
36 |
+
data_path = './data/llava_data/LLaVA-Instruct-150K/llava_v1_5_mix665k.json'
|
37 |
+
data_root = './data/llava_data/'
|
38 |
+
dataloader_num_workers = 4
|
39 |
+
default_hooks = dict(
|
40 |
+
checkpoint=dict(
|
41 |
+
by_epoch=False,
|
42 |
+
interval=500,
|
43 |
+
max_keep_ckpts=2,
|
44 |
+
type='mmengine.hooks.CheckpointHook'),
|
45 |
+
logger=dict(
|
46 |
+
interval=10,
|
47 |
+
log_metric_by_epoch=False,
|
48 |
+
type='mmengine.hooks.LoggerHook'),
|
49 |
+
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
|
50 |
+
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
|
51 |
+
timer=dict(type='mmengine.hooks.IterTimerHook'))
|
52 |
+
env_cfg = dict(
|
53 |
+
cudnn_benchmark=False,
|
54 |
+
dist_cfg=dict(backend='nccl'),
|
55 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
56 |
+
evaluation_freq = 500
|
57 |
+
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg'
|
58 |
+
evaluation_inputs = [
|
59 |
+
'请描述一下这张照片',
|
60 |
+
'Please describe this picture',
|
61 |
+
]
|
62 |
+
image_folder = './data/llava_data/llava_images'
|
63 |
+
image_processor = dict(
|
64 |
+
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
|
65 |
+
trust_remote_code=True,
|
66 |
+
type='transformers.CLIPImageProcessor.from_pretrained')
|
67 |
+
launcher = 'pytorch'
|
68 |
+
llava_dataset = dict(
|
69 |
+
data_path='./data/llava_data/LLaVA-Instruct-150K/llava_v1_5_mix665k.json',
|
70 |
+
dataset_map_fn='xtuner.dataset.map_fns.llava_map_fn',
|
71 |
+
image_folder='./data/llava_data/llava_images',
|
72 |
+
image_processor=dict(
|
73 |
+
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
|
74 |
+
trust_remote_code=True,
|
75 |
+
type='transformers.CLIPImageProcessor.from_pretrained'),
|
76 |
+
max_length=1472,
|
77 |
+
pad_image_to_square=True,
|
78 |
+
template_map_fn=dict(
|
79 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
80 |
+
type='xtuner.dataset.map_fns.template_map_fn_factory'),
|
81 |
+
tokenizer=dict(
|
82 |
+
padding_side='right',
|
83 |
+
pretrained_model_name_or_path='internlm/internlm2-chat-1_8b',
|
84 |
+
trust_remote_code=True,
|
85 |
+
type='transformers.AutoTokenizer.from_pretrained'),
|
86 |
+
type='xtuner.dataset.LLaVADataset')
|
87 |
+
llm_name_or_path = 'internlm/internlm2-chat-1_8b'
|
88 |
+
load_from = None
|
89 |
+
log_level = 'INFO'
|
90 |
+
log_processor = dict(by_epoch=False)
|
91 |
+
lr = 0.0002
|
92 |
+
max_epochs = 1
|
93 |
+
max_length = 1472
|
94 |
+
max_norm = 1
|
95 |
+
model = dict(
|
96 |
+
freeze_llm=True,
|
97 |
+
freeze_visual_encoder=True,
|
98 |
+
llm=dict(
|
99 |
+
pretrained_model_name_or_path='internlm/internlm2-chat-1_8b',
|
100 |
+
quantization_config=dict(
|
101 |
+
bnb_4bit_compute_dtype='torch.float16',
|
102 |
+
bnb_4bit_quant_type='nf4',
|
103 |
+
bnb_4bit_use_double_quant=True,
|
104 |
+
llm_int8_has_fp16_weight=False,
|
105 |
+
llm_int8_threshold=6.0,
|
106 |
+
load_in_4bit=True,
|
107 |
+
load_in_8bit=False,
|
108 |
+
type='transformers.BitsAndBytesConfig'),
|
109 |
+
torch_dtype='torch.float16',
|
110 |
+
trust_remote_code=True,
|
111 |
+
type='transformers.AutoModelForCausalLM.from_pretrained'),
|
112 |
+
llm_lora=dict(
|
113 |
+
bias='none',
|
114 |
+
lora_alpha=256,
|
115 |
+
lora_dropout=0.05,
|
116 |
+
r=512,
|
117 |
+
task_type='CAUSAL_LM',
|
118 |
+
type='peft.LoraConfig'),
|
119 |
+
pretrained_pth=
|
120 |
+
'./work_dirs/llava_internlm2_chat_1_8b_clip_vit_large_p14_336_e1_gpu1_pretrain/iter_13954.pth',
|
121 |
+
type='xtuner.model.LLaVAModel',
|
122 |
+
visual_encoder=dict(
|
123 |
+
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
|
124 |
+
type='transformers.CLIPVisionModel.from_pretrained'),
|
125 |
+
visual_encoder_lora=dict(
|
126 |
+
bias='none',
|
127 |
+
lora_alpha=16,
|
128 |
+
lora_dropout=0.05,
|
129 |
+
r=64,
|
130 |
+
type='peft.LoraConfig'))
|
131 |
+
optim_type = 'torch.optim.AdamW'
|
132 |
+
optim_wrapper = dict(
|
133 |
+
optimizer=dict(
|
134 |
+
betas=(
|
135 |
+
0.9,
|
136 |
+
0.999,
|
137 |
+
),
|
138 |
+
lr=0.0002,
|
139 |
+
type='torch.optim.AdamW',
|
140 |
+
weight_decay=0),
|
141 |
+
type='DeepSpeedOptimWrapper')
|
142 |
+
param_scheduler = [
|
143 |
+
dict(
|
144 |
+
begin=0,
|
145 |
+
by_epoch=True,
|
146 |
+
convert_to_iter_based=True,
|
147 |
+
end=0.03,
|
148 |
+
start_factor=1e-05,
|
149 |
+
type='mmengine.optim.LinearLR'),
|
150 |
+
dict(
|
151 |
+
begin=0.03,
|
152 |
+
by_epoch=True,
|
153 |
+
convert_to_iter_based=True,
|
154 |
+
end=1,
|
155 |
+
eta_min=0.0,
|
156 |
+
type='mmengine.optim.CosineAnnealingLR'),
|
157 |
+
]
|
158 |
+
pretrained_pth = './work_dirs/llava_internlm2_chat_1_8b_clip_vit_large_p14_336_e1_gpu1_pretrain/iter_13954.pth'
|
159 |
+
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
|
160 |
+
randomness = dict(deterministic=False, seed=None)
|
161 |
+
resume = False
|
162 |
+
runner_type = 'FlexibleRunner'
|
163 |
+
save_steps = 500
|
164 |
+
save_total_limit = 2
|
165 |
+
strategy = dict(
|
166 |
+
config=dict(
|
167 |
+
bf16=dict(enabled=True),
|
168 |
+
fp16=dict(enabled=False, initial_scale_power=16),
|
169 |
+
gradient_accumulation_steps='auto',
|
170 |
+
gradient_clipping='auto',
|
171 |
+
train_micro_batch_size_per_gpu='auto',
|
172 |
+
zero_allow_untested_optimizer=True,
|
173 |
+
zero_force_ds_cpu_optimizer=False,
|
174 |
+
zero_optimization=dict(overlap_comm=True, stage=2)),
|
175 |
+
exclude_frozen_parameters=True,
|
176 |
+
gradient_accumulation_steps=3,
|
177 |
+
gradient_clipping=1,
|
178 |
+
train_micro_batch_size_per_gpu=12,
|
179 |
+
type='xtuner.engine.DeepSpeedStrategy')
|
180 |
+
tokenizer = dict(
|
181 |
+
padding_side='right',
|
182 |
+
pretrained_model_name_or_path='internlm/internlm2-chat-1_8b',
|
183 |
+
trust_remote_code=True,
|
184 |
+
type='transformers.AutoTokenizer.from_pretrained')
|
185 |
+
train_cfg = dict(max_epochs=1, type='xtuner.engine.runner.TrainLoop')
|
186 |
+
train_dataloader = dict(
|
187 |
+
batch_size=12,
|
188 |
+
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
|
189 |
+
dataset=dict(
|
190 |
+
data_path=
|
191 |
+
'./data/llava_data/LLaVA-Instruct-150K/llava_v1_5_mix665k.json',
|
192 |
+
dataset_map_fn='xtuner.dataset.map_fns.llava_map_fn',
|
193 |
+
image_folder='./data/llava_data/llava_images',
|
194 |
+
image_processor=dict(
|
195 |
+
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
|
196 |
+
trust_remote_code=True,
|
197 |
+
type='transformers.CLIPImageProcessor.from_pretrained'),
|
198 |
+
max_length=1472,
|
199 |
+
pad_image_to_square=True,
|
200 |
+
template_map_fn=dict(
|
201 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
202 |
+
type='xtuner.dataset.map_fns.template_map_fn_factory'),
|
203 |
+
tokenizer=dict(
|
204 |
+
padding_side='right',
|
205 |
+
pretrained_model_name_or_path='internlm/internlm2-chat-1_8b',
|
206 |
+
trust_remote_code=True,
|
207 |
+
type='transformers.AutoTokenizer.from_pretrained'),
|
208 |
+
type='xtuner.dataset.LLaVADataset'),
|
209 |
+
num_workers=4,
|
210 |
+
sampler=dict(
|
211 |
+
length_property='modality_length',
|
212 |
+
per_device_batch_size=36,
|
213 |
+
type='xtuner.dataset.samplers.LengthGroupedSampler'))
|
214 |
+
visual_encoder_name_or_path = 'openai/clip-vit-large-patch14-336'
|
215 |
+
visualizer = dict(
|
216 |
+
type='mmengine.visualization.Visualizer',
|
217 |
+
vis_backends=[
|
218 |
+
dict(type='mmengine.visualization.TensorboardVisBackend'),
|
219 |
+
])
|
220 |
+
warmup_ratio = 0.03
|
221 |
+
weight_decay = 0
|
222 |
+
work_dir = './work_dirs/llava_internlm2_chat_1_8b_clip_vit_large_p14_336_e1_gpu4_finetune'
|
mmbench_results/ccbench/args.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_name_or_path": "internlm/internlm2-chat-1_8b",
|
3 |
+
"data_path": "./CCBench.tsv",
|
4 |
+
"work_dir": "./mmbench_results",
|
5 |
+
"llava": "./my_lora_and_projector",
|
6 |
+
"visual_encoder": "openai/CLIP-ViT-Large-patch14-336",
|
7 |
+
"visual_select_layer": -2,
|
8 |
+
"prompt_template": "internlm2_chat",
|
9 |
+
"stop_words": [
|
10 |
+
"<|im_end|>"
|
11 |
+
],
|
12 |
+
"torch_dtype": "fp16",
|
13 |
+
"bits": null,
|
14 |
+
"bot_name": "BOT",
|
15 |
+
"offload_folder": null,
|
16 |
+
"max_new_tokens": 100,
|
17 |
+
"seed": 0,
|
18 |
+
"launcher": "pytorch"
|
19 |
+
}
|
mmbench_results/ccbench/mmbench_result.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"Average": 0.35294117647058826,
|
3 |
+
"Calligraphy Painting": 0.2982456140350877,
|
4 |
+
"Cultural Relic": 0.38144329896907214,
|
5 |
+
"Food & Clothes": 0.3652173913043478,
|
6 |
+
"Historical Figure": 0.02857142857142857,
|
7 |
+
"Scenery & Building": 0.3263157894736842,
|
8 |
+
"Sketch Reasoning": 0.6,
|
9 |
+
"Traditional Show": 0.3787878787878788
|
10 |
+
}
|
mmbench_results/ccbench/mmbench_result.xlsx
ADDED
Binary file (115 kB). View file
|
|
mmbench_results/dev_cn/args.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_name_or_path": "internlm/internlm2-chat-1_8b",
|
3 |
+
"data_path": "./MMBench_DEV_CN.tsv",
|
4 |
+
"work_dir": "./mmbench_results",
|
5 |
+
"llava": "./my_lora_and_projector",
|
6 |
+
"visual_encoder": "openai/CLIP-ViT-Large-patch14-336",
|
7 |
+
"visual_select_layer": -2,
|
8 |
+
"prompt_template": "internlm2_chat",
|
9 |
+
"stop_words": [
|
10 |
+
"<|im_end|>"
|
11 |
+
],
|
12 |
+
"torch_dtype": "fp16",
|
13 |
+
"bits": null,
|
14 |
+
"bot_name": "BOT",
|
15 |
+
"offload_folder": null,
|
16 |
+
"max_new_tokens": 100,
|
17 |
+
"seed": 0,
|
18 |
+
"launcher": "pytorch"
|
19 |
+
}
|
mmbench_results/dev_cn/mmbench_result.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"Average": 0.6168384879725086,
|
3 |
+
"AR": 0.6834170854271356,
|
4 |
+
"CP": 0.7398648648648649,
|
5 |
+
"FP-C": 0.5384615384615384,
|
6 |
+
"FP-S": 0.5836177474402731,
|
7 |
+
"LR": 0.4152542372881356,
|
8 |
+
"RR": 0.5739130434782609
|
9 |
+
}
|
mmbench_results/dev_cn/mmbench_result.xlsx
ADDED
Binary file (429 kB). View file
|
|
mmbench_results/dev_en/args.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_name_or_path": "internlm/internlm2-chat-1_8b",
|
3 |
+
"data_path": "./MMBench_DEV_EN.tsv",
|
4 |
+
"work_dir": "./mmbench_results",
|
5 |
+
"llava": "./my_lora_and_projector",
|
6 |
+
"visual_encoder": "openai/CLIP-ViT-Large-patch14-336",
|
7 |
+
"visual_select_layer": -2,
|
8 |
+
"prompt_template": "internlm2_chat",
|
9 |
+
"stop_words": [
|
10 |
+
"<|im_end|>"
|
11 |
+
],
|
12 |
+
"torch_dtype": "fp16",
|
13 |
+
"bits": null,
|
14 |
+
"bot_name": "BOT",
|
15 |
+
"offload_folder": null,
|
16 |
+
"max_new_tokens": 100,
|
17 |
+
"seed": 0,
|
18 |
+
"launcher": "pytorch"
|
19 |
+
}
|
mmbench_results/dev_en/mmbench_result.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"Average": 0.6305841924398625,
|
3 |
+
"AR": 0.6884422110552764,
|
4 |
+
"CP": 0.75,
|
5 |
+
"FP-C": 0.5804195804195804,
|
6 |
+
"FP-S": 0.6075085324232082,
|
7 |
+
"LR": 0.3728813559322034,
|
8 |
+
"RR": 0.6086956521739131
|
9 |
+
}
|
mmbench_results/dev_en/mmbench_result.xlsx
ADDED
Binary file (366 kB). View file
|
|
mmbench_results/test_cn/args.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_name_or_path": "internlm/internlm2-chat-1_8b",
|
3 |
+
"data_path": "./MMBench_TEST_CN.tsv",
|
4 |
+
"work_dir": "./mmbench_results",
|
5 |
+
"llava": "./my_lora_and_projector",
|
6 |
+
"visual_encoder": "openai/CLIP-ViT-Large-patch14-336",
|
7 |
+
"visual_select_layer": -2,
|
8 |
+
"prompt_template": "internlm2_chat",
|
9 |
+
"stop_words": [
|
10 |
+
"<|im_end|>"
|
11 |
+
],
|
12 |
+
"torch_dtype": "fp16",
|
13 |
+
"bits": null,
|
14 |
+
"bot_name": "BOT",
|
15 |
+
"offload_folder": null,
|
16 |
+
"max_new_tokens": 100,
|
17 |
+
"seed": 0,
|
18 |
+
"launcher": "pytorch"
|
19 |
+
}
|
mmbench_results/test_cn/mmbench_result.xlsx
ADDED
Binary file (610 kB). View file
|
|
mmbench_results/test_en/args.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_name_or_path": "internlm/internlm2-chat-1_8b",
|
3 |
+
"data_path": "./MMBench_TEST_EN.tsv",
|
4 |
+
"work_dir": "./mmbench_results",
|
5 |
+
"llava": "./my_lora_and_projector",
|
6 |
+
"visual_encoder": "openai/CLIP-ViT-Large-patch14-336",
|
7 |
+
"visual_select_layer": -2,
|
8 |
+
"prompt_template": "internlm2_chat",
|
9 |
+
"stop_words": [
|
10 |
+
"<|im_end|>"
|
11 |
+
],
|
12 |
+
"torch_dtype": "fp16",
|
13 |
+
"bits": null,
|
14 |
+
"bot_name": "BOT",
|
15 |
+
"offload_folder": null,
|
16 |
+
"max_new_tokens": 100,
|
17 |
+
"seed": 0,
|
18 |
+
"launcher": "pytorch"
|
19 |
+
}
|
mmbench_results/test_en/mmbench_result.xlsx
ADDED
Binary file (547 kB). View file
|
|