File size: 2,088 Bytes
1209aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch

# Load model and tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

# Define gender predictions for specific characters
character_gender_mapping = {
    "NARRATOR": "neutral",
    "FATHER": "male",
    "HARPER": "female"
}

def predict_gender_aggregated(character, lines):
    # Check if the character is in the mapping
    if character.upper() in character_gender_mapping:
        return character_gender_mapping[character.upper()]

    # For other characters, perform gender prediction as before
    aggregated_text = " ".join(lines)
    input_text = f"Character: {character}. Dialogue: {aggregated_text}. Gender:"
    input_ids = tokenizer.encode(input_text, return_tensors='pt')

    # Create an attention mask
    attention_mask = torch.ones(input_ids.shape)

    output = model.generate(input_ids, attention_mask=attention_mask, max_length=60, do_sample=True, temperature=0.7)
    result = tokenizer.decode(output[0], skip_special_tokens=True)

    # Extract gender prediction as 'male' or 'female' (assuming it's one of these two)
    if 'male' in result.lower():
        gender_prediction = 'male'
    elif 'female' in result.lower():
        gender_prediction = 'female'
    else:
        gender_prediction = 'unknown'  # Handle cases where gender isn't explicitly mentioned

    return gender_prediction

# This function will be called for inference
def predict(input_data):
    character = input_data.get("character")
    lines = input_data.get("lines")

    # Error handling for missing input
    if not character or not lines:
        return {"error": "Missing character or lines in the input"}

    gender_prediction = predict_gender_aggregated(character, lines)
    return {"character": character, "predicted_gender": gender_prediction}

# Example input format for testing locally
if __name__ == "__main__":
    test_input = {
        "character": "FATHER",
        "lines": ["I am very proud of you, son."]
    }
    print(predict(test_input))