First Try
Browse files- README.md +15 -36
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +18 -18
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +2 -2
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- LunarLander-v2
|
4 |
-
- ppo
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
-
-
|
8 |
-
- deep-rl-course
|
9 |
model-index:
|
10 |
- name: PPO
|
11 |
results:
|
@@ -17,42 +16,22 @@ model-index:
|
|
17 |
type: LunarLander-v2
|
18 |
metrics:
|
19 |
- type: mean_reward
|
20 |
-
value:
|
21 |
name: mean_reward
|
22 |
verified: false
|
23 |
---
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
'torch_deterministic': True
|
37 |
-
'cuda': True
|
38 |
-
'num_envs': 32
|
39 |
-
'num_steps': 256
|
40 |
-
'anneal_lr': True
|
41 |
-
'gae': True
|
42 |
-
'gamma': 0.99
|
43 |
-
'gae_lambda': 0.8
|
44 |
-
'num_minibatches': 128
|
45 |
-
'update_epochs': 20
|
46 |
-
'norm_adv': False
|
47 |
-
'clip_coef': 0.1
|
48 |
-
'vl_clip': True
|
49 |
-
'ent_coef': 0.00023233247122755093
|
50 |
-
'vf_coef': 0.6401567434560633
|
51 |
-
'max_grad_norm': 0.3
|
52 |
-
'target_kl': 0.012736232712398961
|
53 |
-
'batch_size': 8192
|
54 |
-
'minibatch_size': 64
|
55 |
-
'repo_id': 'Statos6/ppo-LunarLander-v2'
|
56 |
-
'env_id': 'LunarLander-v2'}
|
57 |
-
```
|
58 |
-
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
tags:
|
4 |
- LunarLander-v2
|
|
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 247.58 +/- 46.51
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x795f5950bd00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x795f5950bd90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x795f5950be20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x795f5950beb0>", "_build": "<function ActorCriticPolicy._build at 0x795f5950bf40>", "forward": "<function ActorCriticPolicy.forward at 0x795f5950c040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x795f5950c0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x795f5950c160>", "_predict": "<function ActorCriticPolicy._predict at 0x795f5950c1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x795f5950c280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x795f5950c310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x795f5950c3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x795f594af500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707154856237014971, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBnKz47f4i8YgKBO2+rDrqYmvS9qOTeugAAgD8AAIA/wPTxPeRpvD+tFt4+O+N9vmOg4T0Nf6U9AAAAAAAAAABaqD4+vxcGPkLGh70OK16+msj+PN7p3bwAAAAAAAAAALMqWD1AJgc/wSOUPeuy3L4HdDI9+5gXvQAAAAAAAAAA5ovgvQnScj2yyXg+N8dAvjMRTTxT6Xw9AAAAAAAAAADNOGs+HpcDPwl2IDzvqKK+B0IKPuJ9nLsAAAAAAAAAAICSHz4K838+q9JFvkCRW77VgUS8cV+dPAAAAAAAAAAAwOS2vYacrT9m3fe+UXe1vqRSvr0cnIC+AAAAAAAAAADNDLK5J9RCP6ajOjr2nBq/2dyjvHjb87wAAAAAAAAAAI16yD24pJM8i8tkvSAwbL4OgT48Hj43vAAAAAAAAAAALa8GvsMXiD7RMok9Ae2jvqNSGL3k5Zu7AAAAAAAAAABmfKu99shbuqOOcLUcKwexKRSkO1PQqTQAAIA/AACAP839lLwIWNA9Zp6jPPuzZ749zEC87tYnvQAAAAAAAAAA5vqmvQ99ELx4fZQ8z1P8u0b+br0zqdK8AAAAAAAAgD+N8DS+KImWvHDS2LoLwSC5hOUDPl/SDToAAIA/AACAP9qqKb54ZMY9h323PjY7fL63IoU91UVSPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9SKMvRJEqMAWyUS+mMAXSUR0CWIpevZAY6dX2UKGgGR0BzWuzv7WNFaAdL62gIR0CWIqmEGqxUdX2UKGgGR0Bv2WajN6gNaAdL4GgIR0CWIrkgfU4JdX2UKGgGR0Bu6SlWOp84aAdLzmgIR0CWIzqqwQlKdX2UKGgGR0ByBBTgl4TsaAdL62gIR0CWJIIT4+KTdX2UKGgGR0B0NHh99c8laAdL8mgIR0CWJPKXOW0JdX2UKGgGR0ByTW8yvcJuaAdL7GgIR0CWJgdadMCcdX2UKGgGR0ByglyMkyDaaAdL4WgIR0CWJo9HMEA6dX2UKGgGR0BZSpBHCoCNaAdN6ANoCEdAlih2rCFbmnV9lChoBkdAb9vYh+vyLGgHS/BoCEdAlijhF/hESnV9lChoBkdAcm6YlIEr5WgHTSEBaAhHQJYpOXC0ngJ1fZQoaAZHQHE63uy/sVtoB0vTaAhHQJYpQZqEeyR1fZQoaAZHQHA7zDfm9xpoB0vNaAhHQJYpVcGC7K91fZQoaAZHQHFTGGqPwNNoB0vUaAhHQJYpaab4Ju51fZQoaAZHQHI2Dy4FzMloB0v1aAhHQJYp4hKUVzp1fZQoaAZHQHC9OyAxzq9oB0vpaAhHQJYqByzXz191fZQoaAZHQHGuO36Q/5doB0vnaAhHQJYqg3irDIl1fZQoaAZHQHLtuRHPNV1oB0v+aAhHQJYsdJ/XoTx1fZQoaAZHQHB6fCyhSLtoB00KAWgIR0CWLUUSZjQRdX2UKGgGR0BzbWsaKk2xaAdLzGgIR0CWLu5p8F6idX2UKGgGR0Bxk0xO+IuXaAdL6GgIR0CWL3THKfWddX2UKGgGR0BcL6aoddVvaAdN6ANoCEdAli+QSSNfgXV9lChoBkdAcga5+6RQrWgHTR8BaAhHQJYvrBEa2nd1fZQoaAZHQHBk7m2b5M1oB0vZaAhHQJYv/gOz6ad1fZQoaAZHQG/FneSB9ThoB0vKaAhHQJYwcE+xGDt1fZQoaAZHQHF/kUTL4etoB0vzaAhHQJYxLIdU83d1fZQoaAZHQHAeOvdM0xdoB0v7aAhHQJYxQGeMAFR1fZQoaAZHQHBegZ88cMpoB0vnaAhHQJYxYhRqGlB1fZQoaAZHQHH0jdpItlJoB0v3aAhHQJYy15hScb11fZQoaAZHQHJxD+WGATZoB00vAWgIR0CWMyh/Aj6fdX2UKGgGR0BwXCNzbN8maAdLxGgIR0CWM2jzZpSKdX2UKGgGR0BwDodU83dcaAdNAQFoCEdAljcgEMb3oXV9lChoBkdAcGLEa2nbZmgHS9poCEdAljgUr5IpY3V9lChoBkdAcncJOWSlnGgHS95oCEdAljhObqhUR3V9lChoBkdAb/zegL7XQWgHS/NoCEdAljhpI1+AmXV9lChoBkdAco8T7EYO2GgHS+ZoCEdAljk4/JNj9XV9lChoBkdAcykHFglWwWgHS/toCEdAljmPZmI0qHV9lChoBkdAcZOxffGdZ2gHS99oCEdAljmkkv9LpXV9lChoBkdAcWV7nPmgamgHTQcBaAhHQJY5tM10knl1fZQoaAZHQHEUGxdIGyJoB00DAWgIR0CWOs8gIQe4dX2UKGgGR0BxjcelsP8RaAdNCAFoCEdAljrNl/Yra3V9lChoBkdActJnYQJ5V2gHS85oCEdAljrqk690zXV9lChoBkdAcOErLQokRmgHS9xoCEdAljsUGFBY3nV9lChoBkdAcbAK15Sm7GgHTRsBaAhHQJY8pdKNAC51fZQoaAZHQG+VZ75VOsVoB0vPaAhHQJY+WmwaBI51fZQoaAZHQHCzYVymygRoB0v0aAhHQJY+qn889wF1fZQoaAZHQGRmlRHf/FRoB03oA2gIR0CWPsv4dp7DdX2UKGgGR0ByaeU5dWyUaAdL6GgIR0CWQXHYpUgkdX2UKGgGR0BzlX6hxo7FaAdL/WgIR0CWQcyylenidX2UKGgGR0BvUq+evpyIaAdL9WgIR0CWQgBiCrcTdX2UKGgGR0By4i7I1cdHaAdNKQFoCEdAlkJHeaa1C3V9lChoBkdActGMQVbiZWgHTQcBaAhHQJZCfDZUT+N1fZQoaAZHQG9N3HR1HONoB0vkaAhHQJZCmg9Net11fZQoaAZHQHH4dzbN8mdoB0vlaAhHQJZCverMkhR1fZQoaAZHQHCDaInBtUJoB0vmaAhHQJZC7MlkYoB1fZQoaAZHQHEVUJrtVrBoB0v2aAhHQJZDEbXHzYp1fZQoaAZHQF9b15B1LapoB03oA2gIR0CWQ+b2USqVdX2UKGgGR0Bx9O0dBBzFaAdL22gIR0CWQ/ihFmWddX2UKGgGR0ByI0PAfuCxaAdLz2gIR0CWRPzEJjUedX2UKGgGR0BxV/Y02tMgaAdL6WgIR0CWRhtE5QxfdX2UKGgGR0Bxex5NXYDlaAdL+GgIR0CWRqduHerNdX2UKGgGR0ByCLQY1pCbaAdLzWgIR0CWRwd0JWvKdX2UKGgGR0Bib04BFNL2aAdN6ANoCEdAlkcP5gw483V9lChoBkdAb8/gJkXk52gHS9VoCEdAlkeJ17pmmXV9lChoBkdAax5ezlcQiGgHS99oCEdAlkf+3lS0jXV9lChoBkdAbvqXHim2s2gHS9BoCEdAlkgHkPtlZ3V9lChoBkdAdAbSEUTL4mgHS8BoCEdAlkgN70Fr23V9lChoBkdAcDSMmF8G92gHS9hoCEdAlkhSb2Dg63V9lChoBkdAcnLz8P4EfWgHS/9oCEdAlkkD+m3vyHV9lChoBkdAcIvKyfL9uWgHS/9oCEdAlkl87U5MlHV9lChoBkdAb9pc6eXiSGgHS+doCEdAlkoayfL9uXV9lChoBkdAcc27U5MlC2gHTRoBaAhHQJZKisgdOqN1fZQoaAZHQHFe0PhAGB5oB0vPaAhHQJZKtJlJ6IF1fZQoaAZHQHIWL92ovSNoB0vXaAhHQJZL4UoKD011fZQoaAZHQG9d7s4T9KpoB0vQaAhHQJZMm2CuloF1fZQoaAZHQHDfC+pOvdNoB0vWaAhHQJZMz/ffoA51fZQoaAZHQHJ/h73PAwhoB0vkaAhHQJZMzYbsF+x1fZQoaAZHQHASU+LWI45oB0vmaAhHQJZNzbYbsGB1fZQoaAZHQHGcJGBnSORoB0vTaAhHQJZNzJMg2ZR1fZQoaAZHQHE18RDkU9JoB0vraAhHQJZOaois4kx1fZQoaAZHQHETNQXQ+lloB0vxaAhHQJZOoEQoTf11fZQoaAZHQHGb3pr1uixoB00HAWgIR0CWT45nlGPQdX2UKGgGR0BwGeSHM2WIaAdL8GgIR0CWT7H5aePJdX2UKGgGR0BxrTk+5e7daAdLymgIR0CWUDWUKRdQdX2UKGgGR0BxK3L3bmEHaAdL/mgIR0CWUI6QeV9ndX2UKGgGR0ByJwyk9ECvaAdL32gIR0CWUPV+qioLdX2UKGgGR0BxKWN0eU6gaAdL9mgIR0CWUPn4fwI/dX2UKGgGR0BwTl1IRRMwaAdL5GgIR0CWU11AZ88cdX2UKGgGR0BxfSqwQlKLaAdL9GgIR0CWU6koWpIddX2UKGgGR0BwgjY/Vy3kaAdL7mgIR0CWU7IQvpQldX2UKGgGR0BxzlXXAdn1aAdNDgFoCEdAllOw/gR9PXV9lChoBkdAcqF+bmU4aWgHS+BoCEdAllRFt4zJp3V9lChoBkdAcDS003wTd2gHS+RoCEdAllRhgNPP9nV9lChoBkdAchbw8nuy/2gHS9ZoCEdAllSZrYXfqHV9lChoBkdAci61jy4FzWgHS+ZoCEdAllU4vzvqknV9lChoBkdAY/bwYLsru2gHTegDaAhHQJZV0hkiD/V1fZQoaAZHQG/XlZ5iVjZoB0vBaAhHQJZWIqjJuEV1fZQoaAZHQHKRrPUrkKhoB0v0aAhHQJZWsTURWcV1fZQoaAZHQG/6oTXarWBoB0vfaAhHQJZXYtHxz7x1fZQoaAZHQHCGn3xnWatoB00bAWgIR0CWV6npSrHVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x786a6b6629e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x786a6b662a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x786a6b662b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x786a6b662b90>", "_build": "<function ActorCriticPolicy._build at 0x786a6b662c20>", "forward": "<function ActorCriticPolicy.forward at 0x786a6b662cb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x786a6b662d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x786a6b662dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x786a6b662e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x786a6b662ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x786a6b662f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x786a6b663010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x786a6b7fdb40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711202806798211308, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKb1Q77Fhtw8FV1RPN4KRb7pDfC7/yuqvAAAAAAAAAAA2tTHvuETj7x0sDq9c37Ou+SsJj7g/rs8AACAPwAAgD8NzwQ+rnqyO/97xL3pNbo8SdrGPaLMZb4AAIA/AACAP1pTCL7/IVY//jqMvmErA7+sltu9cqTVvAAAAAAAAAAAEImmvlHvIr2qauU6H62JOa5fXz6OZQ26AACAPwAAgD/NqbG8SECkPynFS76gmhq/uTgAvQgF670AAAAAAAAAABoxQj79IWg+ruoZvjWWrL7TEsE8s7OrPAAAAAAAAAAACghivtsF0bwQObE6a9okOVoAOD5tNuO5AACAPwAAgD/N3JU9Y1SgPwqs8j7F6xi/hB6BPS22VD4AAAAAAAAAAEPGlz6Iavc+j8hIvZYT6b7Gy5E9DyCXvAAAAAAAAAAAzRuhPArMO7vauEC7KnaiPA8WTzw8H4u9AACAPwAAgD+ait48uA35ux7Aa7wBQTG+9QAfPMXNrDwAAIA/AACAP7Nlir5StcI8ynvbuducdjhr4VS+ShMVOQAAgD8AAIA/mptIPGGLvz0+kNK8b3GHvl2cejtiSTG9AAAAAAAAAACje6W+VpHNPnpkD74WZZq+FzzhvQxOSz0AAAAAAAAAAJqNY75BMOK80ksIO4Yc2jmFW0c+YEo0ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLbvacqe9WMAWyUTegDjAF0lEdAlMQ3oC+10HV9lChoBkdActgNc4YJmmgHS/RoCEdAlMT5c9nscHV9lChoBkdAcEv3W4EwFmgHS9poCEdAlMW2Ij4YanV9lChoBkdAcN+2X9itrGgHTT0BaAhHQJTGTtAs0551fZQoaAZHQGuGULlV94NoB0v0aAhHQJTGwiNbTtt1fZQoaAZHQHANUBXCCSRoB00LAWgIR0CUxwA0Kqn4dX2UKGgGR0BtNmNFSbYsaAdLz2gIR0CUxx1uzhP1dX2UKGgGR0ByuQ2sJY1YaAdNWAFoCEdAlMhjrzGxU3V9lChoBkdAcAmigCfYjGgHS9poCEdAlMiOIEbHZXV9lChoBkdAcGkM36yjYmgHS9NoCEdAlMms6/7BPHV9lChoBkdAcEGum78Nx2gHTS8BaAhHQJTKiQr+YMR1fZQoaAZHQHESWBOHnEFoB0vAaAhHQJTKzrnkkrx1fZQoaAZHQHALhHoX9BNoB00/AWgIR0CUyxEK3NLUdX2UKGgGR0ByL6bvw3HaaAdLy2gIR0CUy+kbxVhkdX2UKGgGR0BwY+R7qptKaAdNEwFoCEdAlMyxT850bXV9lChoBkdAbwzzYEnss2gHS8ZoCEdAlSZOUdJaq3V9lChoBkdAb8g4n4O+ZmgHS99oCEdAlSazho/RmnV9lChoBkdAcDjdZJTVD2gHS/poCEdAlScW78Nx2nV9lChoBkdARZHE87p3YGgHS+JoCEdAlSjcMEzO5nV9lChoBkdAcCF4VARkE2gHS8loCEdAlSlQHzH0b3V9lChoBkdAcQuZ5AyEc2gHS81oCEdAlSsZAD7qIXV9lChoBkdAcI6jn3cpLGgHTXABaAhHQJUsHcuanaZ1fZQoaAZHQHAAV14gRsdoB0vCaAhHQJUtP+S8rZt1fZQoaAZHQG9AQxesxPBoB0vTaAhHQJUtSoAGSp11fZQoaAZHQG+UBP9DQZ5oB0u9aAhHQJUt/hrFfiR1fZQoaAZHQHIhKW1MM7VoB0vnaAhHQJUvGquKXOZ1fZQoaAZHQHIXF+RYA81oB01FAWgIR0CVMKeKKpDNdX2UKGgGR0BaG8sUZeiSaAdN6ANoCEdAlTGIiTt9hXV9lChoBkdAXhxssQNCq2gHTegDaAhHQJUyuUNayKN1fZQoaAZHQHFsBMSK3uxoB0vPaAhHQJUzUmKIi1R1fZQoaAZHQHMSvikwevJoB00PAWgIR0CVM23CsOoYdX2UKGgGR0BweAVM23rlaAdLw2gIR0CVNVkX1rZbdX2UKGgGR0BwrsGC7K7qaAdL0mgIR0CVNft7rs0IdX2UKGgGR0BiV3s/pt78aAdN6ANoCEdAlTX8X3xnWnV9lChoBkdAcaQ+qR2bG2gHS7xoCEdAlTctnf2saXV9lChoBkdAciQbJfYzzmgHS+ZoCEdAlTe9gv114nV9lChoBkdAcK1tCzC1qmgHS8RoCEdAlTp5xaPjn3V9lChoBkdAbKYDGLk0amgHTVoBaAhHQJU6vuQZGax1fZQoaAZHQHIq4vWYnfFoB0vqaAhHQJU69SvTw2F1fZQoaAZHQGEoAR02caxoB03oA2gIR0CVO3WUbDMvdX2UKGgGR0BvtERSP2f1aAdLyGgIR0CVO9JwbVBldX2UKGgGR0Bs2ONFSbYsaAdNvgJoCEdAlT6wntv4unV9lChoBkdAcHdTVDrquGgHS/JoCEdAlT7dkOI683V9lChoBkdAbL/Kji4rjGgHS+doCEdAlT73qNZNf3V9lChoBkdAcS/6mO2iL2gHS8doCEdAlT86qwQlKXV9lChoBkdAcQWEnssxwmgHS/FoCEdAlT9IVVPva3V9lChoBkdAc4EJeE7GN2gHTV4BaAhHQJVAdxPwd811fZQoaAZHQHFr8+/xlQNoB0u9aAhHQJVAwV58jRl1fZQoaAZHQHAv4Uvf0mNoB0vMaAhHQJVBeB/Zuht1fZQoaAZHQHKdCkGiYb9oB0vIaAhHQJVCbBDXvph1fZQoaAZHQG29g/TspodoB0vjaAhHQJVC9X1anrJ1fZQoaAZHQHHHxHPNVzZoB0vQaAhHQJVF2NWEK3N1fZQoaAZHQHEHTGo73f1oB0vKaAhHQJVF7mOlwcZ1fZQoaAZHQGLcDDTBqKxoB03oA2gIR0CVRfITGo73dX2UKGgGR0BFPEMTewcHaAdLymgIR0CVRf/hl18tdX2UKGgGR0BxrW6/Zdv9aAdL8mgIR0CVRrig00m/dX2UKGgGR0BycLYZl4C7aAdNBgFoCEdAlUeNXgccVHV9lChoBkdAX23o7muDBmgHTegDaAhHQJVIUMNMGot1fZQoaAZHQHI0wKrq+rVoB0vuaAhHQJVJlUBGQS11fZQoaAZHQG2IZ9E1EVpoB0viaAhHQJVKMe0Xxe91fZQoaAZHQHJlL1qWTotoB03TAWgIR0CVSq1bqyGBdX2UKGgGR0BwZKJm/WUbaAdNUQFoCEdAlUxEit7rs3V9lChoBkdAbd0sU7CBPWgHS81oCEdAlU0Fme18cHV9lChoBkdAbccXv6TGHmgHS8toCEdAlU3aiO/+KnV9lChoBkdAZM1cDbJwKmgHTegDaAhHQJVOj2QGOdZ1fZQoaAZHQHEh70WdmQNoB0v9aAhHQJVOyynk1dh1fZQoaAZHQHAz9znzQNVoB0u/aAhHQJVSFtrKvFF1fZQoaAZHQG2p3jENvwVoB00hAWgIR0CVUlu7pV0cdX2UKGgGR0BwvufukUKzaAdL62gIR0CVUpxqfvnbdX2UKGgGR0BrQRsj3VTaaAdNWQFoCEdAlVKuMdcSoXV9lChoBkdAMMSL61stTWgHS6BoCEdAlVN7NfPX1HV9lChoBkdAZUeEFGG21GgHTZEBaAhHQJVVAZqEeyR1fZQoaAZHQG6T6mO2iL5oB0vEaAhHQJVWr4593KV1fZQoaAZHQGGEaNMoMKFoB03oA2gIR0CVWQKcd5prdX2UKGgGR0BmbsQsf7rLaAdNwANoCEdAlVrHTEzfrXV9lChoBkdAcJw9bor4FmgHS9xoCEdAlVs6X0Gu93V9lChoBkdAcTcVvuPV/mgHTUwBaAhHQJVbRRrJr+J1fZQoaAZHQHGSIZl4C6poB0vNaAhHQJVbqq814xF1fZQoaAZHQHDQV2A5JbtoB0vpaAhHQJVb5NmDlHV1fZQoaAZHQGyPICEHt4RoB01eAWgIR0CVXHuIAOridX2UKGgGR0BwNIaya/h3aAdL6WgIR0CVYh+6RQrMdX2UKGgGR0BtulaQmu1XaAdLz2gIR0CVZNgxJul5dX2UKGgGR0BzO8VN5+pgaAdL6WgIR0CVZRKlpGnXdX2UKGgGR0Bw1qs5n13/aAdLxWgIR0CVZcuIAOridX2UKGgGR0BxtKLn9vS/aAdL3WgIR0CVZiHMEA5rdX2UKGgGR0Bjx9yFPBSDaAdN6ANoCEdAlWiO4G2TgXV9lChoBkdAcE/5VfeDWmgHTU4BaAhHQJVrO3Sa3JB1fZQoaAZHQF/cAG0NSZVoB03oA2gIR0CVbDEPUaybdX2UKGgGR0Bv9EhzNliCaAdL3WgIR0CVbb50bLlndX2UKGgGR0BwXEAjps42aAdL5mgIR0CVcLlqagEmdX2UKGgGR0BuWLW07bL2aAdN0gFoCEdAlXDh/d69kHV9lChoBkdAbe/2IwdsBWgHS/1oCEdAlXEbI5o4/HV9lChoBkdAb6KeWfK6nWgHS8doCEdAlXFt6HCXQnV9lChoBkdAV88HJLdvbWgHTegDaAhHQJVyxEsrd311fZQoaAZHQHEoqIi1RchoB00UAWgIR0CVctsA/9pAdX2UKGgGR0BwQ/JuEVWTaAdNKAFoCEdAlXLuFpPAPHV9lChoBkdAb3GfOlfqo2gHTdEDaAhHQJVz1gx8D0V1fZQoaAZHQHKvNmDlHSZoB00IAWgIR0CVdZz7MxGldX2UKGgGR0BjvddJJ5E/aAdN6ANoCEdAlXabN4Z/C3V9lChoBkdAb4wuJ1q33GgHS+hoCEdAlXa+P3i71HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6a5bfc38cc2593fd06a78480d1b44c60c76fb50460c3a59dc67309b9826e7cf
|
3 |
+
size 148007
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
@@ -54,7 +54,7 @@
|
|
54 |
"_n_updates": 310,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -69,7 +69,7 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x786a6b6629e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x786a6b662a70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x786a6b662b00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x786a6b662b90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x786a6b662c20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x786a6b662cb0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x786a6b662d40>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x786a6b662dd0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x786a6b662e60>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x786a6b662ef0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x786a6b662f80>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x786a6b663010>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x786a6b7fdb40>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1711202806798211308,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKb1Q77Fhtw8FV1RPN4KRb7pDfC7/yuqvAAAAAAAAAAA2tTHvuETj7x0sDq9c37Ou+SsJj7g/rs8AACAPwAAgD8NzwQ+rnqyO/97xL3pNbo8SdrGPaLMZb4AAIA/AACAP1pTCL7/IVY//jqMvmErA7+sltu9cqTVvAAAAAAAAAAAEImmvlHvIr2qauU6H62JOa5fXz6OZQ26AACAPwAAgD/NqbG8SECkPynFS76gmhq/uTgAvQgF670AAAAAAAAAABoxQj79IWg+ruoZvjWWrL7TEsE8s7OrPAAAAAAAAAAACghivtsF0bwQObE6a9okOVoAOD5tNuO5AACAPwAAgD/N3JU9Y1SgPwqs8j7F6xi/hB6BPS22VD4AAAAAAAAAAEPGlz6Iavc+j8hIvZYT6b7Gy5E9DyCXvAAAAAAAAAAAzRuhPArMO7vauEC7KnaiPA8WTzw8H4u9AACAPwAAgD+ait48uA35ux7Aa7wBQTG+9QAfPMXNrDwAAIA/AACAP7Nlir5StcI8ynvbuducdjhr4VS+ShMVOQAAgD8AAIA/mptIPGGLvz0+kNK8b3GHvl2cejtiSTG9AAAAAAAAAACje6W+VpHNPnpkD74WZZq+FzzhvQxOSz0AAAAAAAAAAJqNY75BMOK80ksIO4Yc2jmFW0c+YEo0ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLbvacqe9WMAWyUTegDjAF0lEdAlMQ3oC+10HV9lChoBkdActgNc4YJmmgHS/RoCEdAlMT5c9nscHV9lChoBkdAcEv3W4EwFmgHS9poCEdAlMW2Ij4YanV9lChoBkdAcN+2X9itrGgHTT0BaAhHQJTGTtAs0551fZQoaAZHQGuGULlV94NoB0v0aAhHQJTGwiNbTtt1fZQoaAZHQHANUBXCCSRoB00LAWgIR0CUxwA0Kqn4dX2UKGgGR0BtNmNFSbYsaAdLz2gIR0CUxx1uzhP1dX2UKGgGR0ByuQ2sJY1YaAdNWAFoCEdAlMhjrzGxU3V9lChoBkdAcAmigCfYjGgHS9poCEdAlMiOIEbHZXV9lChoBkdAcGkM36yjYmgHS9NoCEdAlMms6/7BPHV9lChoBkdAcEGum78Nx2gHTS8BaAhHQJTKiQr+YMR1fZQoaAZHQHESWBOHnEFoB0vAaAhHQJTKzrnkkrx1fZQoaAZHQHALhHoX9BNoB00/AWgIR0CUyxEK3NLUdX2UKGgGR0ByL6bvw3HaaAdLy2gIR0CUy+kbxVhkdX2UKGgGR0BwY+R7qptKaAdNEwFoCEdAlMyxT850bXV9lChoBkdAbwzzYEnss2gHS8ZoCEdAlSZOUdJaq3V9lChoBkdAb8g4n4O+ZmgHS99oCEdAlSazho/RmnV9lChoBkdAcDjdZJTVD2gHS/poCEdAlScW78Nx2nV9lChoBkdARZHE87p3YGgHS+JoCEdAlSjcMEzO5nV9lChoBkdAcCF4VARkE2gHS8loCEdAlSlQHzH0b3V9lChoBkdAcQuZ5AyEc2gHS81oCEdAlSsZAD7qIXV9lChoBkdAcI6jn3cpLGgHTXABaAhHQJUsHcuanaZ1fZQoaAZHQHAAV14gRsdoB0vCaAhHQJUtP+S8rZt1fZQoaAZHQG9AQxesxPBoB0vTaAhHQJUtSoAGSp11fZQoaAZHQG+UBP9DQZ5oB0u9aAhHQJUt/hrFfiR1fZQoaAZHQHIhKW1MM7VoB0vnaAhHQJUvGquKXOZ1fZQoaAZHQHIXF+RYA81oB01FAWgIR0CVMKeKKpDNdX2UKGgGR0BaG8sUZeiSaAdN6ANoCEdAlTGIiTt9hXV9lChoBkdAXhxssQNCq2gHTegDaAhHQJUyuUNayKN1fZQoaAZHQHFsBMSK3uxoB0vPaAhHQJUzUmKIi1R1fZQoaAZHQHMSvikwevJoB00PAWgIR0CVM23CsOoYdX2UKGgGR0BweAVM23rlaAdLw2gIR0CVNVkX1rZbdX2UKGgGR0BwrsGC7K7qaAdL0mgIR0CVNft7rs0IdX2UKGgGR0BiV3s/pt78aAdN6ANoCEdAlTX8X3xnWnV9lChoBkdAcaQ+qR2bG2gHS7xoCEdAlTctnf2saXV9lChoBkdAciQbJfYzzmgHS+ZoCEdAlTe9gv114nV9lChoBkdAcK1tCzC1qmgHS8RoCEdAlTp5xaPjn3V9lChoBkdAbKYDGLk0amgHTVoBaAhHQJU6vuQZGax1fZQoaAZHQHIq4vWYnfFoB0vqaAhHQJU69SvTw2F1fZQoaAZHQGEoAR02caxoB03oA2gIR0CVO3WUbDMvdX2UKGgGR0BvtERSP2f1aAdLyGgIR0CVO9JwbVBldX2UKGgGR0Bs2ONFSbYsaAdNvgJoCEdAlT6wntv4unV9lChoBkdAcHdTVDrquGgHS/JoCEdAlT7dkOI683V9lChoBkdAbL/Kji4rjGgHS+doCEdAlT73qNZNf3V9lChoBkdAcS/6mO2iL2gHS8doCEdAlT86qwQlKXV9lChoBkdAcQWEnssxwmgHS/FoCEdAlT9IVVPva3V9lChoBkdAc4EJeE7GN2gHTV4BaAhHQJVAdxPwd811fZQoaAZHQHFr8+/xlQNoB0u9aAhHQJVAwV58jRl1fZQoaAZHQHAv4Uvf0mNoB0vMaAhHQJVBeB/Zuht1fZQoaAZHQHKdCkGiYb9oB0vIaAhHQJVCbBDXvph1fZQoaAZHQG29g/TspodoB0vjaAhHQJVC9X1anrJ1fZQoaAZHQHHHxHPNVzZoB0vQaAhHQJVF2NWEK3N1fZQoaAZHQHEHTGo73f1oB0vKaAhHQJVF7mOlwcZ1fZQoaAZHQGLcDDTBqKxoB03oA2gIR0CVRfITGo73dX2UKGgGR0BFPEMTewcHaAdLymgIR0CVRf/hl18tdX2UKGgGR0BxrW6/Zdv9aAdL8mgIR0CVRrig00m/dX2UKGgGR0BycLYZl4C7aAdNBgFoCEdAlUeNXgccVHV9lChoBkdAX23o7muDBmgHTegDaAhHQJVIUMNMGot1fZQoaAZHQHI0wKrq+rVoB0vuaAhHQJVJlUBGQS11fZQoaAZHQG2IZ9E1EVpoB0viaAhHQJVKMe0Xxe91fZQoaAZHQHJlL1qWTotoB03TAWgIR0CVSq1bqyGBdX2UKGgGR0BwZKJm/WUbaAdNUQFoCEdAlUxEit7rs3V9lChoBkdAbd0sU7CBPWgHS81oCEdAlU0Fme18cHV9lChoBkdAbccXv6TGHmgHS8toCEdAlU3aiO/+KnV9lChoBkdAZM1cDbJwKmgHTegDaAhHQJVOj2QGOdZ1fZQoaAZHQHEh70WdmQNoB0v9aAhHQJVOyynk1dh1fZQoaAZHQHAz9znzQNVoB0u/aAhHQJVSFtrKvFF1fZQoaAZHQG2p3jENvwVoB00hAWgIR0CVUlu7pV0cdX2UKGgGR0BwvufukUKzaAdL62gIR0CVUpxqfvnbdX2UKGgGR0BrQRsj3VTaaAdNWQFoCEdAlVKuMdcSoXV9lChoBkdAMMSL61stTWgHS6BoCEdAlVN7NfPX1HV9lChoBkdAZUeEFGG21GgHTZEBaAhHQJVVAZqEeyR1fZQoaAZHQG6T6mO2iL5oB0vEaAhHQJVWr4593KV1fZQoaAZHQGGEaNMoMKFoB03oA2gIR0CVWQKcd5prdX2UKGgGR0BmbsQsf7rLaAdNwANoCEdAlVrHTEzfrXV9lChoBkdAcJw9bor4FmgHS9xoCEdAlVs6X0Gu93V9lChoBkdAcTcVvuPV/mgHTUwBaAhHQJVbRRrJr+J1fZQoaAZHQHGSIZl4C6poB0vNaAhHQJVbqq814xF1fZQoaAZHQHDQV2A5JbtoB0vpaAhHQJVb5NmDlHV1fZQoaAZHQGyPICEHt4RoB01eAWgIR0CVXHuIAOridX2UKGgGR0BwNIaya/h3aAdL6WgIR0CVYh+6RQrMdX2UKGgGR0BtulaQmu1XaAdLz2gIR0CVZNgxJul5dX2UKGgGR0BzO8VN5+pgaAdL6WgIR0CVZRKlpGnXdX2UKGgGR0Bw1qs5n13/aAdLxWgIR0CVZcuIAOridX2UKGgGR0BxtKLn9vS/aAdL3WgIR0CVZiHMEA5rdX2UKGgGR0Bjx9yFPBSDaAdN6ANoCEdAlWiO4G2TgXV9lChoBkdAcE/5VfeDWmgHTU4BaAhHQJVrO3Sa3JB1fZQoaAZHQF/cAG0NSZVoB03oA2gIR0CVbDEPUaybdX2UKGgGR0Bv9EhzNliCaAdL3WgIR0CVbb50bLlndX2UKGgGR0BwXEAjps42aAdL5mgIR0CVcLlqagEmdX2UKGgGR0BuWLW07bL2aAdN0gFoCEdAlXDh/d69kHV9lChoBkdAbe/2IwdsBWgHS/1oCEdAlXEbI5o4/HV9lChoBkdAb6KeWfK6nWgHS8doCEdAlXFt6HCXQnV9lChoBkdAV88HJLdvbWgHTegDaAhHQJVyxEsrd311fZQoaAZHQHEoqIi1RchoB00UAWgIR0CVctsA/9pAdX2UKGgGR0BwQ/JuEVWTaAdNKAFoCEdAlXLuFpPAPHV9lChoBkdAb3GfOlfqo2gHTdEDaAhHQJVz1gx8D0V1fZQoaAZHQHKvNmDlHSZoB00IAWgIR0CVdZz7MxGldX2UKGgGR0BjvddJJ5E/aAdN6ANoCEdAlXabN4Z/C3V9lChoBkdAb4wuJ1q33GgHS+hoCEdAlXa+P3i71HVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
54 |
"_n_updates": 310,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89d5ee3ae3ec628e73b8beb8b142bb60a3932161ed562e43fc6e539f9584ee8f
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cedf762a21ff858183f38f8e5eb57fe6582fad3b26d8c18f59fba6ca2ca835ca
|
3 |
size 43762
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
-
- PyTorch: 2.1
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
9 |
- OpenAI Gym: 0.25.2
|
|
|
1 |
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
9 |
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"mean_reward": 247.5819133, "std_reward": 46.50626866643557, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-23T14:44:37.377393"}
|