StephanST commited on
Commit
8afd9ad
1 Parent(s): eab52cf

first commit

Browse files
Files changed (3) hide show
  1. app.py +148 -0
  2. end2end.onnx +3 -0
  3. test +0 -2
app.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import os
4
+ import torch
5
+ import onnxruntime as ort
6
+ import time
7
+ from functools import wraps
8
+ import argparse
9
+ from PIL import Image
10
+ from io import BytesIO
11
+ import streamlit as st
12
+
13
+ # Parse command-line arguments
14
+ #parser = argparse.ArgumentParser()
15
+ #parser.add_argument("--mosaic", help="Enable mosaic processing mode", action="store_true")
16
+ #args = parser.parse_args()
17
+ #mosaic = args.mosaic # Set this based on your command line argument
18
+
19
+ # For streamlit use let's just set mosaic to "true", but I'm leavind the command-line arg here for anyone to use
20
+
21
+ mosaic = True
22
+
23
+ def center_crop(img, new_height, new_width):
24
+ height, width, _ = img.shape
25
+ start_x = width//2 - new_width//2
26
+ start_y = height//2 - new_height//2
27
+ return img[start_y:start_y+new_height, start_x:start_x+new_width]
28
+
29
+
30
+ def mosaic_crop(img, size):
31
+ height, width, _ = img.shape
32
+ padding_height = (size - height % size) % size
33
+ padding_width = (size - width % size) % size
34
+
35
+ padded_img = cv2.copyMakeBorder(img, 0, padding_height, 0, padding_width, cv2.BORDER_CONSTANT, value=[0, 0, 0])
36
+ tiles = [padded_img[x:x+size, y:y+size] for x in range(0, padded_img.shape[0], size) for y in range(0, padded_img.shape[1], size)]
37
+
38
+ return tiles, padded_img.shape[0] // size, padded_img.shape[1] // size, padding_height, padding_width
39
+
40
+ def stitch_tiles(tiles, rows, cols, size):
41
+ return np.concatenate([np.concatenate([tiles[i*cols + j] for j in range(cols)], axis=1) for i in range(rows)], axis=0)
42
+
43
+
44
+ def timing_decorator(func):
45
+ @wraps(func)
46
+ def wrapper(*args, **kwargs):
47
+ start_time = time.time()
48
+ result = func(*args, **kwargs)
49
+ end_time = time.time()
50
+
51
+ duration = end_time - start_time
52
+ print(f"Function '{func.__name__}' took {duration:.6f} seconds")
53
+ return result
54
+
55
+ return wrapper
56
+
57
+ @timing_decorator
58
+ def process_image(session, img, colors, mosaic=False):
59
+ if not mosaic:
60
+ # Crop the center of the image to 416x416 pixels
61
+ img = center_crop(img, 416, 416)
62
+ blob = cv2.dnn.blobFromImage(img, 1/255.0, (416, 416), swapRB=True, crop=False)
63
+
64
+ # Perform inference
65
+ output = session.run(None, {session.get_inputs()[0].name: blob})
66
+
67
+ # Assuming the output is a probability map where higher values indicate higher probability of a class
68
+ output_img = output[0].squeeze(0).transpose(1, 2, 0)
69
+ output_img = (output_img * 122).clip(0, 255).astype(np.uint8)
70
+ output_mask = output_img.max(axis=2)
71
+
72
+ output_mask_color = np.zeros((416, 416, 3), dtype=np.uint8)
73
+
74
+ # Assign specific colors to the classes in the mask
75
+ for class_idx in np.unique(output_mask):
76
+ if class_idx in colors:
77
+ output_mask_color[output_mask == class_idx] = colors[class_idx]
78
+
79
+ # Mask for the transparent class
80
+ transparent_mask = (output_mask == 122)
81
+
82
+ # Convert the mask to a 3-channel image
83
+ transparent_mask = np.stack([transparent_mask]*3, axis=-1)
84
+
85
+ # Where the mask is True, set the output color image to the input image
86
+ output_mask_color[transparent_mask] = img[transparent_mask]
87
+
88
+ # Make the colorful mask semi-transparent
89
+ overlay = cv2.addWeighted(img, 0.6, output_mask_color, 0.4, 0)
90
+
91
+ return overlay
92
+
93
+
94
+ # set cuda = true if you have an NVIDIA GPU
95
+ cuda = torch.cuda.is_available()
96
+
97
+ if cuda:
98
+ print("We have a GPU!")
99
+ providers = ['CUDAExecutionProvider'] if cuda else ['CPUExecutionProvider']
100
+
101
+ session = ort.InferenceSession('end2end.onnx', providers=providers)
102
+
103
+
104
+ # Define colors for classes 0, 122 and 244
105
+ colors = {0: (0, 0, 255), 122: (0, 0, 0), 244: (0, 255, 255)} # Red, Black, Yellow
106
+
107
+ def load_image(uploaded_file):
108
+ try:
109
+ image = Image.open(uploaded_file)
110
+ return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
111
+ except Exception as e:
112
+ st.write("Could not load image: ", e)
113
+ return None
114
+
115
+
116
+ st.title("OpenLander ONNX app")
117
+ st.write("Upload an image to process with the ONNX OpenLander model!")
118
+ st.write("Bear in mind that this model is **much less refined** than the embedded models at the moment.")
119
+
120
+
121
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"])
122
+ if uploaded_file is not None:
123
+ img = load_image(uploaded_file)
124
+ if img.shape[2] == 4:
125
+ img = img[:, :, :3] # Drop the alpha channel if it exists
126
+ img_processed = None
127
+
128
+ if st.button('Process'):
129
+ with st.spinner('Processing...'):
130
+ start = time.time()
131
+ if mosaic:
132
+ tiles, rows, cols, padding_height, padding_width = mosaic_crop(img, 416)
133
+ processed_tiles = [process_image(session, tile, colors, mosaic=True) for tile in tiles]
134
+ overlay = stitch_tiles(processed_tiles, rows, cols, 416)
135
+
136
+ # Crop the padding back out
137
+ overlay = overlay[:overlay.shape[0]-padding_height, :overlay.shape[1]-padding_width]
138
+ img_processed = overlay
139
+ else:
140
+ img_processed = process_image(session, img, colors)
141
+ end = time.time()
142
+ st.write(f"Processing time: {end - start} seconds")
143
+
144
+ st.image(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), caption='Uploaded Image.', use_column_width=True)
145
+
146
+ if img_processed is not None:
147
+ st.image(cv2.cvtColor(img_processed, cv2.COLOR_BGR2RGB), caption='Processed Image.', use_column_width=True)
148
+ st.write("Red => obstacle ||| Yellow => Human obstacle ||| no color => clear for landing or delivery ")
end2end.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:812ee73706c48fb9ec4d17aa267488bb37adbdc1cbab484223042b5b82c17a0c
3
+ size 11185635
test DELETED
@@ -1,2 +0,0 @@
1
-
2
- qw