WALDO30 / run_sliced_inference.py
StephanST's picture
Upload 2 files
e9160b2 verified
import cv2
import sys
from sahi.models.yolov8 import Yolov8DetectionModel
from sahi.predict import get_sliced_prediction
import supervision as sv
import numpy as np
# Check the number of command-line arguments
if len(sys.argv) != 8:
print("Usage: python yolov8_video_inference.py <model_path> <input_video_path> <output_video_path> <slice_height> <slice_width> <overlap_height_ratio> <overlap_width_ratio>")
sys.exit(1)
# Get command-line arguments
model_path = sys.argv[1]
input_video_path = sys.argv[2]
output_video_path = sys.argv[3]
slice_height = int(sys.argv[4])
slice_width = int(sys.argv[5])
overlap_height_ratio = float(sys.argv[6])
overlap_width_ratio = float(sys.argv[7])
# Load YOLOv8 model with SAHI
detection_model = Yolov8DetectionModel(
model_path=model_path,
confidence_threshold=0.1,
device="cuda" # or "cpu"
)
# Open input video
cap = cv2.VideoCapture(input_video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
# Set up output video writer
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
# Create bounding box and label annotators
#box_annotator = sv.BoundingBoxAnnotator(thickness=1)
box_annotator = sv.BoxCornerAnnotator(thickness=2)
label_annotator = sv.LabelAnnotator(text_scale=0.5, text_thickness=2)
# Process each frame
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Perform sliced inference on the current frame using SAHI
result = get_sliced_prediction(
image=frame,
detection_model=detection_model,
slice_height=slice_height,
slice_width=slice_width,
overlap_height_ratio=overlap_height_ratio,
overlap_width_ratio=overlap_width_ratio
)
# Extract data from SAHI result
object_predictions = result.object_prediction_list
# Initialize lists to hold the data
xyxy = []
confidences = []
class_ids = []
class_names = []
# Loop over the object predictions and extract data
for pred in object_predictions:
bbox = pred.bbox.to_xyxy() # Convert bbox to [x1, y1, x2, y2]
xyxy.append(bbox)
confidences.append(pred.score.value)
class_ids.append(pred.category.id)
class_names.append(pred.category.name)
# Check if there are any detections
if xyxy:
# Convert lists to numpy arrays
xyxy = np.array(xyxy, dtype=np.float32)
confidences = np.array(confidences, dtype=np.float32)
class_ids = np.array(class_ids, dtype=int)
# Create sv.Detections object
detections = sv.Detections(
xyxy=xyxy,
confidence=confidences,
class_id=class_ids
)
# Prepare labels for label annotator
labels = [
f"{class_name} {confidence:.2f}"
for class_name, confidence in zip(class_names, confidences)
]
# Annotate frame with detection results
annotated_frame = frame.copy()
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections)
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
else:
# If no detections, use the original frame
annotated_frame = frame.copy()
# Write the annotated frame to the output video
out.write(annotated_frame)
frame_count += 1
print(f"Processed frame {frame_count}", end='\r')
# Release resources
cap.release()
out.release()
print("\nInference complete. Video saved at", output_video_path)