StopTryharding
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,71 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- moe
|
5 |
+
- merge
|
6 |
+
- mergekit
|
7 |
+
- lazymergekit
|
8 |
+
- mlabonne/NeuralBeagle14-7B
|
9 |
+
- mlabonne/NeuralDaredevil-7B
|
10 |
---
|
11 |
+
|
12 |
+
---
|
13 |
+
**This is a repository of GGUF Quants for DareBeagel-2x7B**
|
14 |
+
---
|
15 |
+
|
16 |
+
**Available Quants**
|
17 |
+
|
18 |
+
* F16
|
19 |
+
* Q8_0
|
20 |
+
* Q6_K
|
21 |
+
* Q5_0
|
22 |
+
* Q5_K_M
|
23 |
+
* Q5_K_S
|
24 |
+
* Q4_0
|
25 |
+
* Q4_K_M
|
26 |
+
* Q4_K_S
|
27 |
+
* Q3_K_M
|
28 |
+
* Q3_K_S
|
29 |
+
* Q2_K
|
30 |
+
|
31 |
+
# Beyonder-2x7B-v2
|
32 |
+
|
33 |
+
Beyonder-2x7B-v2 is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
|
34 |
+
* [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B)
|
35 |
+
* [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B)
|
36 |
+
|
37 |
+
## 🧩 Configuration
|
38 |
+
|
39 |
+
```yaml
|
40 |
+
base_model: mlabonne/NeuralBeagle14-7B
|
41 |
+
gate_mode: random
|
42 |
+
experts:
|
43 |
+
- source_model: mlabonne/NeuralBeagle14-7B
|
44 |
+
positive_prompts: [""]
|
45 |
+
- source_model: mlabonne/NeuralDaredevil-7B
|
46 |
+
positive_prompts: [""]
|
47 |
+
```
|
48 |
+
|
49 |
+
## 💻 Usage
|
50 |
+
|
51 |
+
```python
|
52 |
+
!pip install -qU transformers bitsandbytes accelerate
|
53 |
+
|
54 |
+
from transformers import AutoTokenizer
|
55 |
+
import transformers
|
56 |
+
import torch
|
57 |
+
|
58 |
+
model = "shadowml/Beyonder-2x7B-v2"
|
59 |
+
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
61 |
+
pipeline = transformers.pipeline(
|
62 |
+
"text-generation",
|
63 |
+
model=model,
|
64 |
+
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
|
65 |
+
)
|
66 |
+
|
67 |
+
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
|
68 |
+
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
69 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
70 |
+
print(outputs[0]["generated_text"])
|
71 |
+
```
|