--- license: apache-2.0 tags: - moe - merge - mergekit - lazymergekit - mlabonne/NeuralBeagle14-7B - mlabonne/NeuralDaredevil-7B - text-generation-inference - Text Generation --- --- **This is a repository of GGUF Quants for DareBeagel-2x7B** --- Original Model Available Here: https://huggingface.co/shadowml/DareBeagel-2x7B **Available Quants** * F16 * Q8_0 * Q6_K * Q5_0 * Q5_K_M * Q5_K_S * Q4_0 * Q4_K_M * Q4_K_S * Q3_K_M * Q3_K_S * Q2_K # Beyonder-2x7B-v2 Beyonder-2x7B-v2 is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) * [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) ## 🧩 Configuration ```yaml base_model: mlabonne/NeuralBeagle14-7B gate_mode: random experts: - source_model: mlabonne/NeuralBeagle14-7B positive_prompts: [""] - source_model: mlabonne/NeuralDaredevil-7B positive_prompts: [""] ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "shadowml/Beyonder-2x7B-v2" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```