File size: 2,991 Bytes
801ee54
 
 
 
 
 
cb7b0f3
 
801ee54
 
 
 
 
 
 
 
 
 
 
 
cb7b0f3
 
 
801ee54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb7b0f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
801ee54
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: voice-clone-large-finetune
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/testgokulepiphany/finetune_voice_clone_imperative_final/runs/w4xycre7)
# voice-clone-large-finetune

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4491
- Wer: 16.9582

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.1608        | 0.8460  | 250  | 0.5171          | 25.8227 |
| 0.0607        | 1.6920  | 500  | 0.4735          | 28.3427 |
| 0.0255        | 2.5381  | 750  | 0.4274          | 25.4966 |
| 0.0138        | 3.3841  | 1000 | 0.4327          | 18.9742 |
| 0.0013        | 4.2301  | 1250 | 0.4508          | 20.8123 |
| 0.0129        | 5.0761  | 1500 | 0.4107          | 21.2274 |
| 0.0005        | 5.9222  | 1750 | 0.4218          | 21.5535 |
| 0.0018        | 6.7682  | 2000 | 0.4256          | 17.5215 |
| 0.0021        | 7.6142  | 2250 | 0.4224          | 18.1441 |
| 0.0015        | 8.4602  | 2500 | 0.4298          | 18.0255 |
| 0.0008        | 9.3063  | 2750 | 0.4376          | 18.1441 |
| 0.0005        | 10.1523 | 3000 | 0.4418          | 17.6697 |
| 0.0014        | 10.9983 | 3250 | 0.4442          | 17.5808 |
| 0.0002        | 11.8443 | 3500 | 0.4422          | 17.1064 |
| 0.0009        | 12.6904 | 3750 | 0.4408          | 17.1657 |
| 0.0002        | 13.5364 | 4000 | 0.4438          | 16.9878 |
| 0.0009        | 14.3824 | 4250 | 0.4452          | 16.7803 |
| 0.0007        | 15.2284 | 4500 | 0.4457          | 16.8989 |
| 0.0           | 16.0745 | 4750 | 0.4485          | 16.8693 |
| 0.0           | 16.9205 | 5000 | 0.4491          | 16.9582 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3