--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: voice-clone-large-finetune results: [] --- [Visualize in Weights & Biases](https://wandb.ai/testgokulepiphany/finetune_voice_clone_imperative_final/runs/w4xycre7) # voice-clone-large-finetune This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4491 - Wer: 16.9582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.1608 | 0.8460 | 250 | 0.5171 | 25.8227 | | 0.0607 | 1.6920 | 500 | 0.4735 | 28.3427 | | 0.0255 | 2.5381 | 750 | 0.4274 | 25.4966 | | 0.0138 | 3.3841 | 1000 | 0.4327 | 18.9742 | | 0.0013 | 4.2301 | 1250 | 0.4508 | 20.8123 | | 0.0129 | 5.0761 | 1500 | 0.4107 | 21.2274 | | 0.0005 | 5.9222 | 1750 | 0.4218 | 21.5535 | | 0.0018 | 6.7682 | 2000 | 0.4256 | 17.5215 | | 0.0021 | 7.6142 | 2250 | 0.4224 | 18.1441 | | 0.0015 | 8.4602 | 2500 | 0.4298 | 18.0255 | | 0.0008 | 9.3063 | 2750 | 0.4376 | 18.1441 | | 0.0005 | 10.1523 | 3000 | 0.4418 | 17.6697 | | 0.0014 | 10.9983 | 3250 | 0.4442 | 17.5808 | | 0.0002 | 11.8443 | 3500 | 0.4422 | 17.1064 | | 0.0009 | 12.6904 | 3750 | 0.4408 | 17.1657 | | 0.0002 | 13.5364 | 4000 | 0.4438 | 16.9878 | | 0.0009 | 14.3824 | 4250 | 0.4452 | 16.7803 | | 0.0007 | 15.2284 | 4500 | 0.4457 | 16.8989 | | 0.0 | 16.0745 | 4750 | 0.4485 | 16.8693 | | 0.0 | 16.9205 | 5000 | 0.4491 | 16.9582 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3