File size: 2,878 Bytes
3b2fb33
 
f89e0f4
3b2fb33
 
f89e0f4
 
 
 
3b2fb33
 
 
 
 
 
 
 
 
 
f89e0f4
3b2fb33
f89e0f4
 
 
 
 
 
 
 
3b2fb33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d34d48c
 
3b2fb33
1dd7ece
d34d48c
3b2fb33
 
f89e0f4
 
3b2fb33
 
f89e0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b2fb33
 
f89e0f4
3b2fb33
 
f89e0f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
base_model: facebook/mbart-large-50-many-to-many-mmt
tags:
- generated_from_trainer
metrics:
- sacrebleu
- bleu
- rouge
model-index:
- name: results
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1030
- Sacrebleu: 36.1071
- Bleu: 0.3611
- Rouge1: 0.6827
- Rouge2: 0.4557
- Rougel: 0.6584
- Rougelsum: 0.6574
- Ter: 44.4372

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 6
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Sacrebleu | Bleu   | Rouge1 | Rouge2 | Rougel | Rougelsum | Ter     |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:------:|:------:|:---------:|:-------:|
| 9.9972        | 0.3534 | 50   | 9.4988          | 19.6720   | 0.1967 | 0.5861 | 0.3417 | 0.5513 | 0.5522    | 58.0351 |
| 7.8177        | 0.7067 | 100  | 6.7801          | 26.8668   | 0.2687 | 0.6116 | 0.3719 | 0.5788 | 0.5795    | 53.6109 |
| 4.1506        | 1.0565 | 150  | 3.1994          | 28.3941   | 0.2839 | 0.6266 | 0.3892 | 0.5946 | 0.5955    | 52.1145 |
| 1.2625        | 1.4099 | 200  | 0.7019          | 32.1449   | 0.3214 | 0.6506 | 0.4209 | 0.6206 | 0.6210    | 49.5771 |
| 0.1995        | 1.7633 | 250  | 0.1521          | 32.0543   | 0.3205 | 0.6496 | 0.4085 | 0.6208 | 0.6198    | 48.5361 |
| 0.0878        | 2.1131 | 300  | 0.1119          | 32.5852   | 0.3259 | 0.6653 | 0.4304 | 0.6378 | 0.6376    | 48.2759 |
| 0.0726        | 2.4664 | 350  | 0.1039          | 35.1243   | 0.3512 | 0.6755 | 0.4455 | 0.6478 | 0.6474    | 45.2180 |
| 0.0672        | 2.8198 | 400  | 0.1007          | 36.5523   | 0.3655 | 0.6749 | 0.4555 | 0.6538 | 0.6541    | 44.6975 |
| 0.0475        | 3.1696 | 450  | 0.1030          | 36.1071   | 0.3611 | 0.6827 | 0.4557 | 0.6584 | 0.6574    | 44.4372 |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.1.2
- Datasets 3.1.0
- Tokenizers 0.21.0