File size: 2,128 Bytes
001c3af
0e233bd
2448662
001c3af
 
90e65ac
 
001c3af
 
 
 
 
 
 
 
7e7c248
001c3af
 
2448662
001c3af
7e7c248
 
001c3af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90e65ac
 
001c3af
 
90e65ac
001c3af
7e7c248
 
 
001c3af
 
90e65ac
 
 
 
7e7c248
 
 
 
 
 
 
90e65ac
 
001c3af
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: Strange18/wav2vec2-nepali-asr
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-nepali-asr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/prashant-bista-18-thapathali-campus/Created%20Dataset%20ASR/runs/s8f6s4q9)
# wav2vec2-nepali-asr

This model is a fine-tuned version of [Strange18/wav2vec2-nepali-asr](https://huggingface.co/Strange18/wav2vec2-nepali-asr) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3957
- Wer: 0.3705

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 0.7578        | 1.5464  | 75   | 0.5105          | 0.4879 |
| 0.6844        | 3.0928  | 150  | 0.4736          | 0.4575 |
| 0.6367        | 4.6392  | 225  | 0.4586          | 0.4291 |
| 0.5977        | 6.1856  | 300  | 0.4387          | 0.4170 |
| 0.5714        | 7.7320  | 375  | 0.4350          | 0.4170 |
| 0.5815        | 9.2784  | 450  | 0.4255          | 0.4109 |
| 0.5629        | 10.8247 | 525  | 0.4260          | 0.4049 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1