File size: 7,629 Bytes
4e6f8d5
 
 
 
 
 
 
 
 
 
736c00c
4e6f8d5
93c7837
4e6f8d5
93c7837
 
 
 
6d8b6f3
4e6f8d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
772d70e
4e6f8d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from base64 import b64decode
from io import BytesIO
import open_clip
import requests
import torch
import numpy as np
from PIL import Image
from typing import Dict, Any

class EndpointHandler:
    def __init__(self, path="hf-hub:Styld/marqo-fashionSigLIP"):
        self.model, self.preprocess_train, self.preprocess_val = (
            open_clip.create_model_and_transforms("hf-hub:Styld/marqo-fashionSigLIP")
        )
        
        if torch.cuda.is_available():
            self.model = self.model.cuda()
        
        self.tokenizer = open_clip.get_tokenizer("hf-hub:Styld/marqo-fashionSigLIP")

    def classify_image(self, candidate_labels, image):
        def get_top_prediction(text_probs, labels):
            max_index = text_probs[0].argmax().item()
            return {
                "label": labels[max_index],
                "score": text_probs[0][max_index].item(),
            }

        top_prediction = None
        for i in range(0, len(candidate_labels), 10):
            batch_labels = candidate_labels[i : i + 10]
            # Preprocess the image
            image_tensor = self.preprocess_val(image).unsqueeze(0)
            text = self.tokenizer(batch_labels)

            with torch.no_grad(), torch.cuda.amp.autocast():
                image_features = self.model.encode_image(image_tensor)
                text_features = self.model.encode_text(text)
                image_features /= image_features.norm(dim=-1, keepdim=True)
                text_features /= text_features.norm(dim=-1, keepdim=True)

                text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)

            current_top = get_top_prediction(text_probs, batch_labels)
            if top_prediction is None or current_top["score"] > top_prediction["score"]:
                top_prediction = current_top

        return {"label": top_prediction["label"]}

    def combine_embeddings(
        self, text_embeddings, image_embeddings, text_weight=0.5, image_weight=0.5
    ):
        """Combine text and image embeddings with specified weights."""
        # Average text embeddings
        if text_embeddings is not None:
            avg_text_embedding = np.mean(np.vstack(text_embeddings), axis=0)
        else:
            avg_text_embedding = np.zeros_like(image_embeddings[0])

        if image_embeddings is not None:
            avg_image_embeddings = np.mean(np.vstack(image_embeddings), axis=0)
        else:
            avg_image_embeddings = np.zeros_like(text_embeddings[0])

        # Combine text and image embeddings with specified weights
        combined_embedding = np.average(
            np.vstack((avg_text_embedding, avg_image_embeddings)),
            axis=0,
            weights=[text_weight, image_weight],
        )
        return combined_embedding

    def average_text(self, doc):
        text_chunks = [
            " ".join(doc.split(" ")[i : i + 40])
            for i in range(0, len(doc.split(" ")), 40)
        ]
        text_embeddings = []
        for chunk in text_chunks:
            inputs = self.tokenizer(chunk)
            text_features = self.model.encode_text(inputs)
            text_features /= text_features.norm(dim=-1, keepdim=True)
            text_embeddings.append(text_features.detach().squeeze().numpy())
        combined = self.combine_embeddings(
            text_embeddings, None, text_weight=1, image_weight=0
        )
        return combined

    def embedd_image(self, doc) -> list:
        if not isinstance(doc, str):
            image = doc.get("image")
            if "https://" in image:
                image = image.split("|")
                # response = requests.get(image)
                image = [
                    Image.open(BytesIO(response.content))
                    for response in [requests.get(image) for image in image]
                ][0]
                # Simulate generating embeddings
                image = self.preprocess_val(image).unsqueeze(0)
                image_features = self.model.encode_image(image)
                image_features /= image_features.norm(dim=-1, keepdim=True)
                image_embedding = image_features.detach().squeeze().numpy()
                if doc.get("description", "") == "":
                    print("empty description. Going with image alone")
                    return image_embedding.tolist()
                else:
                    average_texts = self.average_text(doc.get("description"))
                    combined = self.combine_embeddings(
                        [average_texts],
                        [image_embedding],
                        text_weight=0.5,
                        image_weight=0.5,
                    )
                    return combined.tolist()
        elif isinstance(doc, str):
            return self.average_text(doc).tolist()

    def process_batch(self, batch) -> object:
        try:
            batch = batch.get("batch")
            # Validate the batch input
            if not isinstance(batch, list):
                return "Invalid input: batch must be an array of strings.", 400
            embeddings = [self.embedd_image(item) for item in batch]
            # Send the response with the embeddings array
            return embeddings
        except Exception as e:
            print("Error processing request", e)
            return "An error occurred while processing the request.", 500

    def base64_image_to_pil(self, base64_str) -> Image:
        image_data = b64decode(base64_str)
        image_buffer = BytesIO(image_data)
        image = Image.open(image_buffer)
        return image

    def __call__(self, data: Any) -> Dict[str, Any]:
        """
        Process the input data for either classification or embedding generation.

        Args:
            data (:obj:`dict`): A dictionary containing the input data and parameters for inference.
                For classification:
                    {
                        "type": "classify",
                        "inputs": {
                            "candidates": :obj:`list[str]`,
                            "image": :obj:`str`  # URL or base64 encoded image
                        }
                    }
                For embedding:
                    {
                        "type": "embedd",
                        "batch": :obj:`list[str | dict[str, str]]`  # Text or image+description
                    }

        Returns:
            :obj:`dict`: The result of the operation.
                For classification:
                    {
                        "label": :obj:`str`  # The predicted label
                    }
                For embedding:
                    {
                        "embeddings": :obj:`list[list[float]]`  # List of embeddings
                    }

        Raises:
            :obj:`Exception`: If an error occurs during processing.
        """
        inputs = data.pop("inputs", data)
        type = data.pop("type", "embedd")  # Or classify
        if type == "classify":
            candidate_labels = inputs["candidates"]
            image = (
                Image.open(BytesIO(requests.get(inputs["image"]).content))
                if "https://" in inputs["image"]
                else self.base64_image_to_pil(inputs["image"])
            )
            response = self.classify_image(candidate_labels, image)
            return response
        elif type == "embedd":
            try:
                embeddings = self.process_batch(inputs)
                return {"embeddings": embeddings}
            except Exception as e:
                print(e)
                return e