--- library_name: transformers language: - ko license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - Suchae/whisper-large-v3-ko-middlesenior-dialect-speech-v1.1 model-index: - name: Suchae/whisper-large-v3-ko-middlesenior-dialect-speech-v1.1 results: [] --- # Suchae/whisper-large-v3-ko-middlesenior-dialect-speech-v1.1 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Suchae/whisper-large-v3-ko-middlesenior-dialect-speech-v1.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.5249 - Cer: 14.4500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 10 - eval_batch_size: 5 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.333 | 0.0548 | 64 | 0.9131 | 19.4136 | | 1.1099 | 0.1096 | 128 | 0.7550 | 17.2538 | | 0.9577 | 0.1643 | 192 | 0.6955 | 17.2038 | | 0.9198 | 0.2191 | 256 | 0.6615 | 15.8003 | | 0.7995 | 0.2739 | 320 | 0.6357 | 16.5130 | | 0.7898 | 0.3287 | 384 | 0.6150 | 15.8066 | | 0.7344 | 0.3835 | 448 | 0.6022 | 14.9533 | | 0.7035 | 0.4383 | 512 | 0.5846 | 14.3594 | | 0.6936 | 0.4930 | 576 | 0.5711 | 16.6193 | | 0.6427 | 0.5478 | 640 | 0.5602 | 14.7063 | | 0.6365 | 0.6026 | 704 | 0.5530 | 15.0095 | | 0.6107 | 0.6574 | 768 | 0.5440 | 14.5813 | | 0.596 | 0.7122 | 832 | 0.5379 | 15.2315 | | 0.5831 | 0.7670 | 896 | 0.5357 | 15.1377 | | 0.5542 | 0.8217 | 960 | 0.5308 | 15.0314 | | 0.5675 | 0.8765 | 1024 | 0.5277 | 15.2252 | | 0.532 | 0.9313 | 1088 | 0.5252 | 15.6722 | | 0.5255 | 0.9861 | 1152 | 0.5249 | 14.4500 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu118 - Datasets 3.0.0 - Tokenizers 0.19.1