File size: 1,384 Bytes
d5e4cbd 74e2300 d5e4cbd 74e2300 d5e4cbd 74e2300 d5e4cbd 74e2300 d5e4cbd 74e2300 d5e4cbd 74e2300 d5e4cbd 74e2300 d5e4cbd 74e2300 d5e4cbd 74e2300 d5e4cbd 74e2300 d5e4cbd 74e2300 d5e4cbd 74e2300 d5e4cbd 74e2300 d5e4cbd 74e2300 d5e4cbd 74e2300 d5e4cbd 74e2300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: other
library_name: peft
tags:
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
model-index:
- name: trainer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trainer
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0849
- eval_runtime: 37.5454
- eval_samples_per_second: 0.692
- eval_steps_per_second: 0.346
- epoch: 3.0
- step: 354
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
- mixed_precision_training: Native AMP
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 |