SwastikM commited on
Commit
4d1fbd6
1 Parent(s): 4b37c7f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -142
README.md CHANGED
@@ -10,198 +10,142 @@ datasets:
10
  - flytech/python-codes-25k
11
  ---
12
 
13
- # Model Card for Model ID
14
-
15
- <!-- Provide a quick summary of what the model is/does. -->
16
 
 
17
 
18
 
19
  ## Model Details
20
 
21
  ### Model Description
22
 
23
- <!-- Provide a longer summary of what this model is. -->
24
-
25
-
26
-
27
- - **Developed by:** [More Information Needed]
28
- - **Funded by [optional]:** [More Information Needed]
29
- - **Shared by [optional]:** [More Information Needed]
30
- - **Model type:** [More Information Needed]
31
- - **Language(s) (NLP):** [More Information Needed]
32
- - **License:** [More Information Needed]
33
- - **Finetuned from model [optional]:** [More Information Needed]
34
-
35
- ### Model Sources [optional]
36
-
37
- <!-- Provide the basic links for the model. -->
38
 
39
- - **Repository:** [More Information Needed]
40
- - **Paper [optional]:** [More Information Needed]
41
- - **Demo [optional]:** [More Information Needed]
42
 
43
- ## Uses
 
 
 
 
44
 
45
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
 
47
- ### Direct Use
48
 
49
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
 
51
- [More Information Needed]
 
 
 
 
 
52
 
53
- ### Downstream Use [optional]
 
 
54
 
55
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
 
57
- [More Information Needed]
58
 
59
- ### Out-of-Scope Use
 
60
 
61
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
 
63
- [More Information Needed]
 
64
 
65
- ## Bias, Risks, and Limitations
 
66
 
67
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
68
 
69
- [More Information Needed]
 
 
70
 
71
- ### Recommendations
72
-
73
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
-
75
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
-
77
- ## How to Get Started with the Model
78
-
79
- Use the code below to get started with the model.
80
-
81
- [More Information Needed]
82
 
83
  ## Training Details
84
 
85
  ### Training Data
86
 
87
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
-
89
- [More Information Needed]
90
 
91
  ### Training Procedure
92
 
93
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
 
95
- #### Preprocessing [optional]
96
 
97
- [More Information Needed]
 
98
 
99
 
100
  #### Training Hyperparameters
101
 
102
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
-
104
- #### Speeds, Sizes, Times [optional]
105
-
106
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
-
108
- [More Information Needed]
109
-
110
- ## Evaluation
111
-
112
- <!-- This section describes the evaluation protocols and provides the results. -->
113
-
114
- ### Testing Data, Factors & Metrics
115
-
116
- #### Testing Data
117
-
118
- <!-- This should link to a Dataset Card if possible. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Factors
123
-
124
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
-
126
- [More Information Needed]
127
 
128
- #### Metrics
129
-
130
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
-
132
- [More Information Needed]
133
-
134
- ### Results
135
-
136
- [More Information Needed]
137
-
138
- #### Summary
139
-
140
-
141
-
142
- ## Model Examination [optional]
143
-
144
- <!-- Relevant interpretability work for the model goes here -->
145
-
146
- [More Information Needed]
147
-
148
- ## Environmental Impact
149
-
150
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
-
152
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
-
154
- - **Hardware Type:** [More Information Needed]
155
- - **Hours used:** [More Information Needed]
156
- - **Cloud Provider:** [More Information Needed]
157
- - **Compute Region:** [More Information Needed]
158
- - **Carbon Emitted:** [More Information Needed]
159
-
160
- ## Technical Specifications [optional]
161
-
162
- ### Model Architecture and Objective
163
-
164
- [More Information Needed]
165
-
166
- ### Compute Infrastructure
167
-
168
- [More Information Needed]
169
 
170
  #### Hardware
171
 
172
- [More Information Needed]
173
-
174
- #### Software
175
-
176
- [More Information Needed]
177
-
178
- ## Citation [optional]
179
-
180
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
-
182
- **BibTeX:**
183
 
184
- [More Information Needed]
185
 
186
- **APA:**
187
 
188
- [More Information Needed]
 
 
 
 
 
 
 
 
189
 
190
- ## Glossary [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
 
192
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
 
194
- [More Information Needed]
195
 
196
- ## More Information [optional]
197
 
198
- [More Information Needed]
199
 
200
- ## Model Card Authors [optional]
 
201
 
202
- [More Information Needed]
203
 
204
- ## Model Card Contact
205
 
206
- [More Information Needed]
207
- ### Framework versions
 
10
  - flytech/python-codes-25k
11
  ---
12
 
13
+ # BART-LARGE-CNN fine-tuned on SYNTHETIC_TEXT_TO_SQL
 
 
14
 
15
+ Generate SQL query from Natural Language question with a SQL context.
16
 
17
 
18
  ## Model Details
19
 
20
  ### Model Description
21
 
22
+ BART from facebook/bart-large-cnn is fintuned on gretelai/synthetic_text_to_sql dataset to generate SQL from NL and SQL context
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
 
 
 
24
 
25
+ - **Model type:** BART
26
+ - **Language(s) (NLP):** English
27
+ - **License:** openrail
28
+ - **Finetuned from model [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct.)**
29
+ - **Dataset:** [gretelai/synthetic_text_to_sql](https://huggingface.co/datasets/gretelai/synthetic_text_to_sql)
30
 
31
+ ## Intended uses & limitations
32
 
33
+ Addressing the power of LLM in fintuned downstream task. Implemented as a personal Project.
34
 
35
+ ### How to use
36
 
37
+ ```python
38
+ query_question_with_context = """sql_prompt: Which economic diversification efforts in
39
+ the 'diversification' table have a higher budget than the average budget for all economic diversification efforts in the 'budget' table?
40
+ sql_context: CREATE TABLE diversification (id INT, effort VARCHAR(50), budget FLOAT); CREATE TABLE
41
+ budget (diversification_id INT, diversification_effort VARCHAR(50), amount FLOAT);"""
42
+ ```
43
 
44
+ # Use a pipeline as a high-level helper
45
+ ```python
46
+ from transformers import pipeline
47
 
48
+ sql_generator = pipeline("text2text-generation", model="SwastikM/bart-large-nl2sql")
49
 
50
+ sql = sql_generator(query_question_with_context)[0]['generated_text']
51
 
52
+ print(sql)
53
+ ```
54
 
55
+ # Load model directly
56
 
57
+ ```python
58
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
59
 
60
+ tokenizer = AutoTokenizer.from_pretrained("SwastikM/bart-large-nl2sql")
61
+ model = AutoModelForSeq2SeqLM.from_pretrained("SwastikM/bart-large-nl2sql")
62
 
63
+ inputs = tokenizer(query_question_with_context, return_tensors="pt").input_ids
64
+ outputs = model.generate(inputs, max_new_tokens=100, do_sample=False)
65
 
66
+ sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
67
+ print(sql)
68
+ ```
69
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  ## Training Details
72
 
73
  ### Training Data
74
 
75
+ [gretelai/synthetic_text_to_sql](https://huggingface.co/datasets/gretelai/synthetic_text_to_sql)
 
 
76
 
77
  ### Training Procedure
78
 
79
+ HuggingFace Accelerate with Training Loop.
80
 
81
+ #### Preprocessing
82
 
83
+ - ***Encoder Input:*** "sql_prompt: " + data['sql_prompt']+" sql_context: "+data['sql_context']
84
+ - ***Decoder Input:*** data['sql']
85
 
86
 
87
  #### Training Hyperparameters
88
 
89
+ - **Optimizer:** AdamW
90
+ - **lr:** 2e-5
91
+ - **decay:** linear
92
+ - **num_warmup_steps:** 0
93
+ - **batch_size:** 8
94
+ - **num_training_steps:** 12500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
  #### Hardware
98
 
99
+ - **GPU:** P100
 
 
 
 
 
 
 
 
 
 
100
 
 
101
 
102
+ ### Citing Dataset and BaseModel
103
 
104
+ ```
105
+ @software{gretel-synthetic-text-to-sql-2024,
106
+ author = {Meyer, Yev and Emadi, Marjan and Nathawani, Dhruv and Ramaswamy, Lipika and Boyd, Kendrick and Van Segbroeck, Maarten and Grossman, Matthew and Mlocek, Piotr and Newberry, Drew},
107
+ title = {{Synthetic-Text-To-SQL}: A synthetic dataset for training language models to generate SQL queries from natural language prompts},
108
+ month = {April},
109
+ year = {2024},
110
+ url = {https://huggingface.co/datasets/gretelai/synthetic-text-to-sql}
111
+ }
112
+ ```
113
 
114
+ ```
115
+ @article{DBLP:journals/corr/abs-1910-13461,
116
+ author = {Mike Lewis and
117
+ Yinhan Liu and
118
+ Naman Goyal and
119
+ Marjan Ghazvininejad and
120
+ Abdelrahman Mohamed and
121
+ Omer Levy and
122
+ Veselin Stoyanov and
123
+ Luke Zettlemoyer},
124
+ title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language
125
+ Generation, Translation, and Comprehension},
126
+ journal = {CoRR},
127
+ volume = {abs/1910.13461},
128
+ year = {2019},
129
+ url = {http://arxiv.org/abs/1910.13461},
130
+ eprinttype = {arXiv},
131
+ eprint = {1910.13461},
132
+ timestamp = {Thu, 31 Oct 2019 14:02:26 +0100},
133
+ biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib},
134
+ bibsource = {dblp computer science bibliography, https://dblp.org}
135
+ }
136
 
137
+ ```
138
 
139
+ ## Additional Information
140
 
141
+ - ***Github:*** [Repository](https://github.com/swastikmaiti/SwastikM-bart-large-nl2sql.git)
142
 
143
+ ## Acknowledgment
144
 
145
+ Thanks to [@AI at Meta](https://huggingface.co/facebook) for adding the Pre Trained Model.
146
+ Thanks to [@Gretel.ai](https://huggingface.co/gretelai) for adding the datset.
147
 
 
148
 
149
+ ## Model Card Authors
150
 
151
+ Swastik Maiti