import torch import torch.nn as nn import os from torch.nn import functional as F from torch.utils.data import Dataset as TorchDataset from torch.utils.data import DataLoader as DataLoader from typing import Optional, Tuple, Union, Callable, List, Dict, Any from einops import rearrange from dataclasses import dataclass from transformers import PreTrainedModel, PretrainedConfig, EsmTokenizer, PreTrainedTokenizerBase from transformers.modeling_outputs import ( ModelOutput, BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, SequenceClassifierOutput, TokenClassifierOutput ) from transformers.models.esm.modeling_esm import ( EsmIntermediate, EsmOutput, EsmPooler, EsmLMHead, EsmSelfOutput, EsmClassificationHead, ) from tqdm.auto import tqdm @dataclass class EsmMaskedLMOutput(ModelOutput): loss: Optional[torch.Tensor] = None logits: Optional[torch.Tensor] = None last_hidden_state: Optional[torch.Tensor] = None hidden_states: Optional[Tuple[torch.Tensor, ...]] = None attentions: Optional[Tuple[torch.Tensor, ...]] = None class FastEsmConfig(PretrainedConfig): model_type = "fast_esm" def __init__( self, vocab_size: int = None, mask_token_id: int = None, pad_token_id: int = None, hidden_size: int = 768, num_hidden_layers: int = 12, num_attention_heads: int = 12, intermediate_size: int = 3072, hidden_dropout_prob: float = 0.1, attention_probs_dropout_prob: float = 0.1, max_position_embeddings: int = 1026, initializer_range: float = 0.02, layer_norm_eps: float = 1e-12, position_embedding_type: str = "absolute", emb_layer_norm_before: bool = None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.emb_layer_norm_before = emb_layer_norm_before def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionar y of all the attributes that make up this configuration instance, """ output = super().to_dict() return output def rotate_half(x: torch.Tensor) -> torch.Tensor: x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor: cos = cos[:, :, : x.shape[-2], :] sin = sin[:, :, : x.shape[-2], :] return (x * cos) + (rotate_half(x) * sin) def symmetrize(x: torch.Tensor) -> torch.Tensor: "Make layer symmetric in final two dimensions, used for contact prediction." return x + x.transpose(-1, -2) def average_product_correct(x: torch.Tensor) -> torch.Tensor: "Perform average product correct, used for contact prediction." a1 = x.sum(-1, keepdims=True) a2 = x.sum(-2, keepdims=True) a12 = x.sum((-1, -2), keepdims=True) avg = a1 * a2 avg.div_(a12) # in-place to reduce memory normalized = x - avg return normalized class EsmContactPredictionHead(nn.Module): """Performs symmetrization, apc, and computes a logistic regression on the output features""" def __init__( self, in_features: int, bias: bool = True, eos_idx: int = 2, ): super().__init__() self.in_features = in_features self.eos_idx = eos_idx self.regression = nn.Linear(in_features, 1, bias=bias) self.activation = nn.Sigmoid() def forward(self, input_ids: torch.Tensor, attentions: torch.Tensor) -> torch.Tensor: # remove eos token attentions eos_mask = input_ids.ne(self.eos_idx).to(attentions) eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2) attentions = attentions * eos_mask[:, None, None, :, :] attentions = attentions[..., :-1, :-1] # remove cls token attentions attentions = attentions[..., 1:, 1:] batch_size, layers, heads, seqlen, _ = attentions.size() attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen) # features: batch x channels x tokens x tokens (symmetric) attentions = attentions.to( self.regression.weight.device ) # attentions always float32, may need to convert to float16 attentions = average_product_correct(symmetrize(attentions)) attentions = attentions.permute(0, 2, 3, 1) return self.activation(self.regression(attentions).squeeze(3)) class RotaryEmbedding(torch.nn.Module): """ Rotary position embeddings based on those in [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation matrices which depend on their relative positions. """ def __init__(self, dim: int): super().__init__() # Generate and save the inverse frequency buffer (non trainable) inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)) inv_freq = inv_freq self.register_buffer("inv_freq", inv_freq) self._seq_len_cached = None self._cos_cached = None self._sin_cached = None def _update_cos_sin_tables(self, x: torch.Tensor, seq_dimension: int = 2) -> Tuple[torch.Tensor, torch.Tensor]: seq_len = x.shape[seq_dimension] # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: self._seq_len_cached = seq_len t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) self._cos_cached = emb.cos()[None, None, :, :].to(x.dtype) self._sin_cached = emb.sin()[None, None, :, :].to(x.dtype) return self._cos_cached, self._sin_cached def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2) return ( apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), ) class EsmEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) if config.emb_layer_norm_before: self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) else: self.layer_norm = None self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, past_key_values_length: Optional[int] = 0, ): if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) embeddings = inputs_embeds if self.layer_norm is not None: embeddings = self.layer_norm(embeddings) if attention_mask is not None: embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) class EsmSelfAttention(nn.Module): def __init__(self, config, position_embedding_type: Optional[str] = None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.scale = self.attention_head_size**-0.5 self.dropout_prob = config.attention_probs_dropout_prob self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) self.rotary_embeddings = None if self.position_embedding_type == "rotary": self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: return rearrange(x, 'b s (h d) -> b h s d', h=self.num_attention_heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """Forward pass for self attention. Args: hidden_states: Input tensor attention_mask: Optional attention mask output_attentions: Whether to return attention weights Returns: Output tensor and optionally attention weights """ query_layer = self.transpose_for_scores(self.query(hidden_states)) * self.scale key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) if self.position_embedding_type == "rotary": query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) if output_attentions: # Manual attention computation to get attention weights attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = F.softmax(attention_scores, dim=-1) if self.dropout_prob > 0: attention_probs = F.dropout(attention_probs, p=self.dropout_prob, training=self.training) context_layer = torch.matmul(attention_probs, value_layer) context_layer = rearrange(context_layer, 'b h s d -> b s (h d)') return context_layer, attention_probs else: context_layer = F.scaled_dot_product_attention( query_layer, key_layer, value_layer, attn_mask=attention_mask, dropout_p=self.dropout_prob, scale=1.0 ) context_layer = rearrange(context_layer, 'b h s d -> b s (h d)') return context_layer class EsmAttention(nn.Module): def __init__(self, config): super().__init__() self.self = EsmSelfAttention(config) self.output = EsmSelfOutput(config) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """Forward pass for attention layer. Args: hidden_states: Input tensor attention_mask: Optional attention mask output_attentions: Whether to return attention weights Returns: Output tensor and optionally attention weights """ hidden_states_ln = self.LayerNorm(hidden_states) self_outputs = self.self( hidden_states_ln, attention_mask, output_attentions, ) if output_attentions: attention_output, attention_weights = self_outputs attention_output = self.output(attention_output, hidden_states) return attention_output, attention_weights else: attention_output = self_outputs return self.output(attention_output, hidden_states) class EsmLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = EsmAttention(config) self.intermediate = EsmIntermediate(config) self.output = EsmOutput(config) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """Forward pass for transformer layer. Args: hidden_states: Input tensor attention_mask: Optional attention mask output_attentions: Whether to return attention weights Returns: Output tensor and optionally attention weights """ attention_outputs = self.attention( hidden_states, attention_mask, output_attentions, ) if output_attentions: attention_output, attention_weights = attention_outputs else: attention_output = attention_outputs attention_weights = None layer_output = self.feed_forward_chunk(attention_output) if output_attentions: return layer_output, attention_weights return layer_output def feed_forward_chunk(self, attention_output): attention_output_ln = self.LayerNorm(attention_output) intermediate_output = self.intermediate(attention_output_ln) layer_output = self.output(intermediate_output, attention_output) return layer_output class EsmEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)]) self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> BaseModelOutputWithPastAndCrossAttentions: """Forward pass for transformer encoder. Args: hidden_states: Input tensor attention_mask: Optional attention mask output_hidden_states: Whether to return all hidden states output_attentions: Whether to return attention weights Returns: BaseModelOutputWithPastAndCrossAttentions containing model outputs """ all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for layer_module in self.layer: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, output_attentions, ) if output_attentions: hidden_states, attention_weights = layer_outputs all_attentions = all_attentions + (attention_weights,) else: hidden_states = layer_outputs if self.emb_layer_norm_after: hidden_states = self.emb_layer_norm_after(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, ) ### Support for embedding datasets with low code class Pooler: def __init__(self, pooling_types: List[str]): self.pooling_types = pooling_types self.pooling_options = { 'mean': self.mean_pooling, 'max': self.max_pooling, 'min': self.min_pooling, 'norm': self.norm_pooling, 'prod': self.prod_pooling, 'median': self.median_pooling, 'std': self.std_pooling, 'var': self.var_pooling, 'cls': self.cls_pooling, } def mean_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d) if attention_mask is None: return emb.mean(dim=1) else: attention_mask = attention_mask.unsqueeze(-1) return (emb * attention_mask).sum(dim=1) / attention_mask.sum(dim=1) def max_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d) if attention_mask is None: return emb.max(dim=1).values else: attention_mask = attention_mask.unsqueeze(-1) return (emb * attention_mask).max(dim=1).values def min_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d) if attention_mask is None: return emb.min(dim=1).values else: attention_mask = attention_mask.unsqueeze(-1) return (emb * attention_mask).min(dim=1).values def norm_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d) if attention_mask is None: return emb.norm(dim=1, p=2) else: attention_mask = attention_mask.unsqueeze(-1) return (emb * attention_mask).norm(dim=1, p=2) def prod_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d) length = emb.shape[1] if attention_mask is None: return emb.prod(dim=1) / length else: attention_mask = attention_mask.unsqueeze(-1) return ((emb * attention_mask).prod(dim=1) / attention_mask.sum(dim=1)) / length def median_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d) if attention_mask is None: return emb.median(dim=1).values else: attention_mask = attention_mask.unsqueeze(-1) return (emb * attention_mask).median(dim=1).values def std_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d) if attention_mask is None: return emb.std(dim=1) else: attention_mask = attention_mask.unsqueeze(-1) return (emb * attention_mask).std(dim=1) def var_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d) if attention_mask is None: return emb.var(dim=1) else: attention_mask = attention_mask.unsqueeze(-1) return (emb * attention_mask).var(dim=1) def cls_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d) return emb[:, 0, :] def __call__(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # [mean, max] final_emb = [] for pooling_type in self.pooling_types: final_emb.append(self.pooling_options[pooling_type](emb, attention_mask)) # (b, d) return torch.cat(final_emb, dim=-1) # (b, n_pooling_types * d) class ProteinDataset(TorchDataset): """Simple dataset for protein sequences.""" def __init__(self, sequences: list[str]): self.sequences = sequences def __len__(self) -> int: return len(self.sequences) def __getitem__(self, idx: int) -> str: return self.sequences[idx] def build_collator(tokenizer) -> Callable[[list[str]], tuple[torch.Tensor, torch.Tensor]]: def _collate_fn(sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]: """Collate function for batching sequences.""" return tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8) return _collate_fn class EmbeddingMixin: def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: raise NotImplementedError @property def device(self) -> torch.device: """Get the device of the model.""" return next(self.parameters()).device def _read_sequences_from_db(self, db_path: str) -> set[str]: """Read sequences from SQLite database.""" import sqlite3 sequences = [] with sqlite3.connect(db_path) as conn: c = conn.cursor() c.execute("SELECT sequence FROM embeddings") while True: row = c.fetchone() if row is None: break sequences.append(row[0]) return set(sequences) def embed_dataset( self, sequences: List[str], tokenizer: PreTrainedTokenizerBase, batch_size: int = 2, max_len: int = 512, full_embeddings: bool = False, embed_dtype: torch.dtype = torch.float32, pooling_types: List[str] = ['mean'], num_workers: int = 0, sql: bool = False, save: bool = True, sql_db_path: str = 'embeddings.db', save_path: str = 'embeddings.pth', ) -> Optional[dict[str, torch.Tensor]]: """Embed a dataset of protein sequences. Args: sequences: List of protein sequences batch_size: Batch size for processing max_len: Maximum sequence length full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False) pooling_type: Type of pooling ('mean' or 'cls') num_workers: Number of workers for data loading, 0 for the main process sql: Whether to store embeddings in SQLite database - will be stored in float32 sql_db_path: Path to SQLite database Returns: Dictionary mapping sequences to embeddings, or None if sql=True Note: - If sql=True, embeddings can only be stored in float32 - sql is ideal if you need to stream a very large dataset for training in real-time - save=True is ideal if you can store the entire embedding dictionary in RAM - sql will be used if it is True and save is True or False - If your sql database or .pth file is already present, they will be scanned first for already embedded sequences - Sequences will be truncated to max_len and sorted by length in descending order for faster processing Example: >>> embedder = EmbeddingMixin() >>> embedding_dict = embedder.embed_dataset( sequences=[ 'MALWMRLLPLLALLALWGPDPAAA', ... # list of protein sequences ], batch_size=2, # adjust for your GPU memory max_len=512, # adjust for your needs full_embeddings=False, # if True, no pooling is performed embed_dtype=torch.float32, # cast to what dtype you want pooling_type=['mean', 'cls'], # more than one pooling type will be concatenated together num_workers=0, # if you have many cpu cores, we find that num_workers = 4 is fast for large datasets sql=False, # if True, embeddings will be stored in SQLite database sql_db_path='embeddings.db', save=True, # if True, embeddings will be saved as a .pth file save_path='embeddings.pth', ) >>> # embedding_dict is a dictionary mapping sequences to their embeddings as tensors for .pth or numpy arrays for sql """ sequences = list(set([seq[:max_len] for seq in sequences])) sequences = sorted(sequences, key=len, reverse=True) collate_fn = build_collator(tokenizer) device = self.device pooler = Pooler(pooling_types) if not full_embeddings else None def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: if full_embeddings or residue_embeddings.ndim == 2: # if already pooled or want residue-wise embeddings return residue_embeddings else: return pooler(residue_embeddings, attention_mask) if sql: import sqlite3 conn = sqlite3.connect(sql_db_path) c = conn.cursor() c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)') already_embedded = self._read_sequences_from_db(sql_db_path) to_embed = [seq for seq in sequences if seq not in already_embedded] print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}") print(f"Embedding {len(to_embed)} new sequences") if len(to_embed) > 0: dataset = ProteinDataset(to_embed) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn, shuffle=False) with torch.no_grad(): for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'): seqs = to_embed[i * batch_size:(i + 1) * batch_size] input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device) residue_embeddings = self._embed(input_ids, attention_mask).float() # sql requires float32 embeddings = get_embeddings(residue_embeddings, attention_mask).cpu() for seq, emb, mask in zip(seqs, embeddings, attention_mask): if full_embeddings: emb = emb[mask.bool()] c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)", (seq, emb.cpu().numpy().tobytes())) if (i + 1) % 100 == 0: conn.commit() conn.commit() conn.close() return None embeddings_dict = {} if os.path.exists(save_path): embeddings_dict = torch.load(save_path, map_location='cpu', weights_only=True) to_embed = [seq for seq in sequences if seq not in embeddings_dict] print(f"Found {len(embeddings_dict)} already embedded sequences in {save_path}") print(f"Embedding {len(to_embed)} new sequences") else: to_embed = sequences print(f"Embedding {len(to_embed)} new sequences") if len(to_embed) > 0: dataset = ProteinDataset(to_embed) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn, shuffle=False) with torch.no_grad(): for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'): seqs = to_embed[i * batch_size:(i + 1) * batch_size] input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device) residue_embeddings = self._embed(input_ids, attention_mask) embeddings = get_embeddings(residue_embeddings, attention_mask).to(embed_dtype).cpu() for seq, emb in zip(seqs, embeddings): embeddings_dict[seq] = emb if save: torch.save(embeddings_dict, save_path) return embeddings_dict class FastEsmPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FastEsmConfig base_model_prefix = "fastesm" supports_gradient_checkpointing = True tokenizer = EsmTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D") def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def get_input_embeddings(self) -> nn.Module: try: return self.embeddings.word_embeddings except AttributeError: return self.esm.embeddings.word_embeddings class FAST_ESM_ENCODER(FastEsmPreTrainedModel, EmbeddingMixin): def __init__(self, config, add_pooling_layer: Optional[bool] = True): super(FastEsmPreTrainedModel, self).__init__(config) self.config = config self.embeddings = EsmEmbeddings(config) self.encoder = EsmEncoder(config) self.contact_head = EsmContactPredictionHead( in_features=config.num_hidden_layers * config.num_attention_heads, bias=True ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: token_embedding_output = self.embeddings(input_ids, attention_mask=attention_mask) batch_size, seq_length = input_ids.shape if attention_mask is not None: extended_attention_mask = attention_mask[:, None, None, :].expand( batch_size, 1, seq_length, seq_length ).bool() else: extended_attention_mask = None encoder_outputs = self.encoder( token_embedding_output, attention_mask=extended_attention_mask, output_hidden_states=False, output_attentions=False, ) return encoder_outputs.last_hidden_state def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor: attns = self(input_ids, attention_mask=attention_mask, output_attentions=True).attentions attns = torch.stack(attns, dim=1) attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3) attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4) return self.contact_head(input_ids, attns) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, # to play nice with HF adjacent packages ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: """Forward pass for base model. Args: input_ids: Input token IDs attention_mask: Optional attention mask position_ids: Optional position IDs inputs_embeds: Optional input embeddings output_hidden_states: Whether to return all hidden states output_attentions: Whether to return attention weights Returns: Model outputs including hidden states and optionally attention weights """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape token_embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, ) if attention_mask is not None: extended_attention_mask = attention_mask[:, None, None, :].expand( batch_size, 1, seq_length, seq_length ).bool() else: extended_attention_mask = None encoder_outputs = self.encoder( token_embedding_output, attention_mask=extended_attention_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) sequence_output = encoder_outputs.last_hidden_state return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class FastEsmModel(FastEsmPreTrainedModel, EmbeddingMixin): def __init__(self, config, add_pooling_layer: Optional[bool] = True): super(FastEsmPreTrainedModel, self).__init__(config) self.config = config self.esm = FAST_ESM_ENCODER(config) self.pooler = EsmPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: return self.esm._embed(input_ids, attention_mask) def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor: return self.esm.predict_contacts(input_ids, attention_mask=attention_mask) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, # to play nice with HF adjacent packages ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: """Forward pass for base model. Args: input_ids: Input token IDs attention_mask: Optional attention mask position_ids: Optional position IDs inputs_embeds: Optional input embeddings output_hidden_states: Whether to return all hidden states output_attentions: Whether to return attention weights Returns: Model outputs including hidden states and optionally attention weights """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) sequence_output = outputs.last_hidden_state pooled_output = self.pooler(sequence_output) if self.pooler is not None else None return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class FastEsmForMaskedLM(FastEsmPreTrainedModel, EmbeddingMixin): _tied_weights_keys = ["lm_head.decoder.weight"] def __init__(self, config): super(FastEsmPreTrainedModel, self).__init__(config) self.esm = FAST_ESM_ENCODER(config, add_pooling_layer=False) self.lm_head = EsmLMHead(config) self.loss_fct = nn.CrossEntropyLoss() self.init_weights() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: return self.esm._embed(input_ids, attention_mask) def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor: return self.esm.predict_contacts(input_ids, attention_mask=attention_mask) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, # to play nice with HF adjacent packages ) -> Union[Tuple, EsmMaskedLMOutput]: outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) sequence_output = outputs.last_hidden_state prediction_scores = self.lm_head(sequence_output) loss = None if labels is not None: labels = labels.to(prediction_scores.device) loss = self.loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) return EsmMaskedLMOutput( loss=loss, logits=prediction_scores, last_hidden_state=sequence_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class FastEsmForSequenceClassification(FastEsmPreTrainedModel, EmbeddingMixin): def __init__(self, config): super(FastEsmPreTrainedModel, self).__init__(config) self.num_labels = config.num_labels self.config = config self.esm = FAST_ESM_ENCODER(config, add_pooling_layer=False) self.classifier = EsmClassificationHead(config) self.mse = nn.MSELoss() self.ce = nn.CrossEntropyLoss() self.bce = nn.BCEWithLogitsLoss() self.init_weights() def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: return self.esm._embed(input_ids, attention_mask) def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor: return self.esm.predict_contacts(input_ids, attention_mask=attention_mask) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None ) -> Union[Tuple, SequenceClassifierOutput]: outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state logits = self.classifier(sequence_output) loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": if self.num_labels == 1: loss = self.mse(logits.squeeze(), labels.squeeze()) else: loss = self.mse(logits, labels) elif self.config.problem_type == "single_label_classification": loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss = self.bce(logits, labels) return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class FastEsmForTokenClassification(FastEsmPreTrainedModel, EmbeddingMixin): def __init__(self, config): super(FastEsmPreTrainedModel, self).__init__(config) self.num_labels = config.num_labels self.esm = FAST_ESM_ENCODER(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.loss_fct = nn.CrossEntropyLoss() self.init_weights() def _embed(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: return self.esm._embed(input_ids, attention_mask) def predict_contacts(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor: return self.esm.predict_contacts(input_ids, attention_mask=attention_mask) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None ) -> Union[Tuple, TokenClassifierOutput]: outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: labels = labels.to(logits.device) loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) if __name__ == "__main__": """ Test the hidden state differences between the FastEsmModel and the HF EsmModel. In full precision, the differences are very very small, but nonzero due to floating point issues with F.scaled_dot_product_attention. In Pytorch 2.5+ (and linux kernel), this implementation is very fast and uses less memory than the HF implementation. """ import random from transformers import EsmForMaskedLM as TransformersEsmModel, EsmTokenizer model_paths = [ "facebook/esm2_t6_8M_UR50D", "facebook/esm2_t12_35M_UR50D", #"facebook/esm2_t30_150M_UR50D", #"facebook/esm2_t33_650M_UR50D", ] canonical_amino_acids = "ACDEFGHIKLMNPQRSTVWY" length = 64 seq_count = 100 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tolerances = [1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8] def generate_random_sequence(length: int) -> str: return 'M' + "".join(random.choices(canonical_amino_acids, k=length)) print("Percentage of hidden states that are within the tolerance:") for model_path in model_paths: print(f"Testing {model_path}...") tokenizer = EsmTokenizer.from_pretrained(model_path) config = FastEsmConfig.from_pretrained(model_path) fast_model = FastEsmForMaskedLM(config).from_pretrained(model_path).to(device) print('fast model') print(fast_model) model = TransformersEsmModel.from_pretrained(model_path, token_dropout=False).to(device) print('transformers model') print(model) counts = [0] * len(tolerances) for _ in range(seq_count): example_seq = generate_random_sequence(length) fast_tokens = tokenizer(example_seq, return_tensors="pt").input_ids.to(device) fast_output = fast_model(fast_tokens, output_hidden_states=True).hidden_states[-1].detach().cpu() model_tokens = tokenizer(example_seq, return_tensors="pt").input_ids.to(device) model_output = model(model_tokens, output_hidden_states=True).hidden_states[-1].detach().cpu() for i, atol in enumerate(tolerances): if torch.allclose(fast_output, model_output, atol=atol): counts[i] += 1 print(f"{model_path}:") for i, atol in enumerate(tolerances): print(f" tolerance={atol}: {counts[i] / seq_count * 100}%") model.cpu() fast_model.cpu() del model del fast_model torch.cuda.empty_cache()