File size: 2,052 Bytes
2b5a790
edaa852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b5a790
edaa852
2b5a790
edaa852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
language:
  - en
  - zh
  - de
  - es
  - ru
  - ko
  - fr
  - ja
  - pt
  - tr
  - pl
  - ca
  - nl
  - ar
  - sv
  - it
  - id
  - hi
  - fi
  - vi
  - he
  - uk
  - el
  - ms
  - cs
  - ro
  - da
  - hu
  - ta
  - 'no'
  - th
  - ur
  - hr
  - bg
  - lt
  - la
  - mi
  - ml
  - cy
  - sk
  - te
  - fa
  - lv
  - bn
  - sr
  - az
  - sl
  - kn
  - et
  - mk
  - br
  - eu
  - is
  - hy
  - ne
  - mn
  - bs
  - kk
  - sq
  - sw
  - gl
  - mr
  - pa
  - si
  - km
  - sn
  - yo
  - so
  - af
  - oc
  - ka
  - be
  - tg
  - sd
  - gu
  - am
  - yi
  - lo
  - uz
  - fo
  - ht
  - ps
  - tk
  - nn
  - mt
  - sa
  - lb
  - my
  - bo
  - tl
  - mg
  - as
  - tt
  - haw
  - ln
  - ha
  - ba
  - jw
  - su
  - yue
tags:
  - audio
  - automatic-speech-recognition
license: mit
library_name: ctranslate2
---

# Whisper large-v3 model for CTranslate2

This repository contains the conversion of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format.

This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/systran/faster-whisper).

## Example

```python
from faster_whisper import WhisperModel

model = WhisperModel("large-v3")

segments, info = model.transcribe("audio.mp3")
for segment in segments:
    print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
```

## Conversion details

The original model was converted with the following command:

```
ct2-transformers-converter --model openai/whisper-large-v3 --output_dir faster-whisper-large-v3 \
    --copy_files tokenizer.json preprocessor_config.json --quantization float16
```

Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html).

## More information

**For more information about the original model, see its [model card](https://huggingface.co/openai/whisper-large-v3).**